Performance Trade-Off of File System between Overwriting and Dynamic Relocation on a Solid State Drive

Most file systems overwrite modified file data and metadata in their original locations, while the Log-structured File System (LFS) dynamically relocates them to other locations. We design and implement the Evergreen file system that can select between overwriting or relocation for each block of a file or metadata. Therefore, the Evergreen file system can achieve superior write performance by sequentializing write requests (similar to LFS-style relocation) when space utilization is low and overwriting when utilization is high. Another challenging issue is identifying performance benefits of LFS-style relocation over overwriting on a newly introduced SSD (Solid State Drive) which has only Flash-memory chips and control circuits without mechanical parts. Our experimental results measured on a SSD show that relocation outperforms overwriting when space utilization is below 80% and vice versa.

Optimization of Some Process Parameters to Produce Raisin Concentrate in Khorasan Region of Iran

Raisin Concentrate (RC) are the most important products obtained in the raisin processing industries. These RC products are now used to make the syrups, drinks and confectionery productions and introduced as natural substitute for sugar in food applications. Iran is a one of the biggest raisin exporter in the world but unfortunately despite a good raw material, no serious effort to extract the RC has been taken in Iran. Therefore, in this paper, we determined and analyzed affected parameters on extracting RC process and then optimizing these parameters for design the extracting RC process in two types of raisin (round and long) produced in Khorasan region. Two levels of solvent (1:1 and 2:1), three levels of extraction temperature (60°C, 70°C and 80°C), and three levels of concentration temperature (50°C, 60°C and 70°C) were the treatments. Finally physicochemical characteristics of the obtained concentrate such as color, viscosity, percentage of reduction sugar, acidity and the microbial tests (mould and yeast) were counted. The analysis was performed on the basis of factorial in the form of completely randomized design (CRD) and Duncan's multiple range test (DMRT) was used for the comparison of the means. Statistical analysis of results showed that optimal conditions for production of concentrate is round raisins when the solvent ratio was 2:1 with extraction temperature of 60°C and then concentration temperature of 50°C. Round raisin is cheaper than the long one, and it is more economical to concentrate production. Furthermore, round raisin has more aromas and the less color degree with increasing the temperature of concentration and extraction. Finally, according to mentioned factors the concentrate of round raisin is recommended.

Effects of Corrosion on Reinforced Concrete Beams with Silica Fume and Polypropylene Fibre

Reinforced concrete has good durability and excellent structural performance. But there are cases of early deterioration due to a number of factors, one prominent factor being corrosion of steel reinforcement. The process of corrosion sets in due to ingress of moisture, oxygen and other ingredients into the body of concrete, which is unsound, permeable and absorbent. Cracks due to structural and other causes such as creep, shrinkage, etc also allow ingress of moisture and other harmful ingredients and thus accelerate the rate of corrosion. There are several interactive factors both external and internal, which lead to corrosion of reinforcement and ultimately failure of structures. Suitable addition of mineral admixture like silica fume (SF) in concrete improves the strength and durability of concrete due to considerable improvement in the microstructure of concrete composites, especially at the transition zone. Secondary reinforcement in the form of fibre is added to concrete, which provides three dimensional random reinforcement in the entire mass of concrete. Reinforced concrete beams of size 0.1 m X 0.15 m and length 1m have been cast using M 35 grade of concrete. The beams after curing process were subjected to corrosion process by impressing an external Direct Current (Galvanostatic Method) for a period of 15 days under stressed and unstressed conditions. The corroded beams were tested by applying two point loads to determine the ultimate load carrying capacity and cracking pattern and the results of specimens were compared with that of the companion specimens. Gravimetric method is used to quantify corrosion that has occurred.

Barriers and Opportunities for the Adoption of e-Governance Services

In this article a bibliography research takes place to track down and introduce the barriers and opportunities for the adoption of e-Governance services mainly from the side of citizen, that is to say, the demand side. Although governments invest continuously in producing of e-Governance services, citizens face difficulties to adopt these services. Barriers derive and prevent them from using e-Governance services. Barrier is anything preventing citizens from the adoption of e-Governance services. Barriers impede or do not allow the adoption of e-Governance services by the citizens. If the barriers are pinpointed, it will be possible to take them into consideration while designing e-Governance services which the citizens are likely to use, if the obstacles are raised. The barriers will thus be converted in opportunities that will facilitate the adoption.

Rheology of Composites with Nature Vegetal Origin Fibers

Conventional materials like glass, wood or metals replacement with polymer materials is still continuing. More simple thus cheaper production is the main reason. However due to high energy and petrochemical prices are polymer prices increasing too. That´s why various kinds of fillers are used to make polymers cheaper. Of course target is to maintain or improve properties of these compounds. In this paper are solved rheology issues of polymers compounded with vegetal origin fibers.

A Green Design for Assembly Model for Integrated Design Evaluation and Assembly and Disassembly Sequence Planning

A green design for assembly model is presented to integrate design evaluation and assembly and disassembly sequence planning by evaluating the three activities in one integrated model. For an assembled product, an assembly sequence planning model is required for assembling the product at the start of the product life cycle. A disassembly sequence planning model is needed for disassembling the product at the end. In a green product life cycle, it is important to plan how a product can be disassembled, reused, or recycled, before the product is actually assembled and produced. Given a product requirement, there may be several design alternative cases to design the same product. In the different design cases, the assembly and disassembly sequences for producing the product can be different. In this research, a new model is presented to concurrently evaluate the design and plan the assembly and disassembly sequences. First, the components are represented by using graph based models. Next, a particle swarm optimization (PSO) method with a new encoding scheme is developed. In the new PSO encoding scheme, a particle is represented by a position matrix defining an assembly sequence and a disassembly sequence. The assembly and disassembly sequences can be simultaneously planned with an objective of minimizing the total of assembly costs and disassembly costs. The test results show that the presented method is feasible and efficient for solving the integrated design evaluation and assembly and disassembly sequence planning problem. An example product is implemented and illustrated in this paper.

Mix Goat and Sheep Yogurt: Development and Product Characterization

Yogurts are prepared by fermenting milk with bacterial cultures consisting of a mixture of Streptococcus ssp. thermophilus and Lactobacillus delbrueckii ssp. bulgaricus. The main aim of this investigation was to develop a majority goat yogurt, with the addition of sheep milk in order to have a final product with good physicochemical quality properties and sensorial attributes. Four types of yogurts were prepared presenting the following proportion of goat and sheep milk respectively: C100 – 100%; C80 – 80%/20%; C60 – 60%/40%; C50 – 50%/50%. The goat milk was from the Serrana Jarmelista breed and the sheep milk from the Serra da Estrela breed. The inclusion of sheep milk improved attractiveness to consumers, and it also improved the nutritional value of the product, mainly the fatty acid and mineral contents. The C50 yogurt was preferred by 28% of the panellists, followed by the C100 with 16%  and the commercial cow yogurt was 40% of preferences.

Hydrodynamic Modeling of a Surface Water Treatment Pilot Plant

A mathematical model for the hydrodynamics of a surface water treatment pilot plant was developed and validated by the determination of the residence time distribution (RTD) for the main equipments of the unit. The well known models of ideal/real mixing, ideal displacement (plug flow) and (one-dimensional axial) dispersion model were combined in order to identify the structure that gives the best fitting of the experimental data for each equipment of the pilot plant. RTD experimental results have shown that pilot plant hydrodynamics can be quite well approximated by a combination of simple mathematical models, structure which is suitable for engineering applications. Validated hydrodynamic models will be further used in the evaluation and selection of the most suitable coagulation-flocculation reagents, optimum operating conditions (injection point, reaction times, etc.), in order to improve the quality of the drinking water.

Effect of Gold Loading on CeO2–Fe2O3 for Oxidative Steam Reforming of Methanol

In this study, oxidative steam reforming of methanol (OSRM) over a Au/CeO2–Fe2O3 catalyst prepared by a depositionprecipitation (DP) method was studied to produce hydrogen in order to feed a Proton Exchange Membrane Fuel Cell (PEMFC). The support (CeO2, Fe2O3, and CeO2–Fe2O3) were prepared by precipitation and co-precipitation methods. The impact of the support composition on the catalytic performance was studied by varying the Ce/(Ce+Fe) atomic ratio, it was found that the 1%Au/CF(0.25) calcined at 300 °C exhibited the highest catalytic activity in the whole temperature studied. In addition, the effect of Au content was investigated and 3%Au/CF(0.25) exhibited the highest activity under the optimum condition in the temperature range of 200 °C to 400 °C. The catalysts were characterized by various techniques: XRD, TPR, XRF, and UV-vis.

Micro Environmental Concrete

Reactive powder concretes (RPC) are characterized by particle diameter not exceeding 600 μm and having very high compressive and tensile strengths. This paper describes a new generation of micro concrete, which has an initial, as well as a final, high physicomechanical performance. To achieve this, we replaced the Portland cement (15% by weight) by materials rich in Silica (Slag and Dune Sand). The results obtained from tests carried out on RPC show that compressive and tensile strengths increase when adding the additions, thus improving the compactness of mixtures via filler and pozzolanic effect. With a reduction of the aggregate phase in the RPC and the abundance of dune sand (south Algeria) and slag (industrial byproduct of blast furnace), the use of the RPC will allow Algeria to fulfil economical as well as ecological requirements.

Fast and Accuracy Control Chart Pattern Recognition using a New cluster-k-Nearest Neighbor

By taking advantage of both k-NN which is highly accurate and K-means cluster which is able to reduce the time of classification, we can introduce Cluster-k-Nearest Neighbor as "variable k"-NN dealing with the centroid or mean point of all subclasses generated by clustering algorithm. In general the algorithm of K-means cluster is not stable, in term of accuracy, for that reason we develop another algorithm for clustering our space which gives a higher accuracy than K-means cluster, less subclass number, stability and bounded time of classification with respect to the variable data size. We find between 96% and 99.7 % of accuracy in the lassification of 6 different types of Time series by using K-means cluster algorithm and we find 99.7% by using the new clustering algorithm.

Experimental Results about the Dynamics of the Generalized Belief Propagation Used on LDPC Codes

In the context of channel coding, the Generalized Belief Propagation (GBP) is an iterative algorithm used to recover the transmission bits sent through a noisy channel. To ensure a reliable transmission, we apply a map on the bits, that is called a code. This code induces artificial correlations between the bits to send, and it can be modeled by a graph whose nodes are the bits and the edges are the correlations. This graph, called Tanner graph, is used for most of the decoding algorithms like Belief Propagation or Gallager-B. The GBP is based on a non unic transformation of the Tanner graph into a so called region-graph. A clear advantage of the GBP over the other algorithms is the freedom in the construction of this graph. In this article, we explain a particular construction for specific graph topologies that involves relevant performance of the GBP. Moreover, we investigate the behavior of the GBP considered as a dynamic system in order to understand the way it evolves in terms of the time and in terms of the noise power of the channel. To this end we make use of classical measures and we introduce a new measure called the hyperspheres method that enables to know the size of the attractors.

Managing a Manufacturing System with Integration of Walking Worker and Lean Thinking

A product goes through various processes in a production flow which is also known as assembly line in manufacturing process management. Toyota created a new concept which is known as lean concept in manufacturing industry. Today it is the leading model in manufacturing plants through the globe. The linear walking worker assembly line is a flexible assembly system where each worker travels down the line carrying out each assembly task at each station; and each worker accomplishes the assembly of a unit from start to finish. This paper attempts to combine the flexibility of the walking worker and lean in order to quantify the benefits from applying the shop floor principles of lean management.

Comprehensive Study on the Linear Hydrodynamic Analysis of a Truss Spar in Random Waves

Truss spars are used for oil exploitation in deep and ultra-deep water if storage crude oil is not needed. The linear hydrodynamic analysis of truss spar in random sea wave load is necessary for determining the behaviour of truss spar. This understanding is not only important for design of the mooring lines, but also for optimising the truss spar design. In this paper linear hydrodynamic analysis of truss spar is carried out in frequency domain. The hydrodynamic forces are calculated using the modified Morison equation and diffraction theory. Added mass and drag coefficients of truss section computed by transmission matrix and normal acceleration and velocity component acting on each element and for hull section computed by strip theory. The stiffness properties of the truss spar can be separated into two components; hydrostatic stiffness and mooring line stiffness. Then, platform response amplitudes obtained by solved the equation of motion. This equation is non-linear due to viscous damping term therefore linearised by iteration method [1]. Finally computed RAOs and significant response amplitude and results are compared with experimental data.

A Design of Supply Chain Management System with Flexible Planning Capability

In production planning (PP) periods with excess capacity and growing demand, the manufacturers have two options to use the excess capacity. First, it could do more changeovers and thus reduce lot sizes, inventories, and inventory costs. Second, it could produce in excess of demand in the period and build additional inventory that can be used to satisfy future demand increments, thus delaying the purchase of the next machine that is required to meet the growth in demand. In this study we propose an enhanced supply chain planning model with flexible planning capability. In addition, a 3D supply chain planning system is illustrated.

Automatic Inspection of Percussion Caps by Means of Combined 2D and 3D Machine Vision Techniques

The exhaustive quality control is becoming more and more important when commercializing competitive products in the world's globalized market. Taken this affirmation as an undeniable truth, it becomes critical in certain sector markets that need to offer the highest restrictions in quality terms. One of these examples is the percussion cap mass production, a critical element assembled in firearm ammunition. These elements, built in great quantities at a very high speed, must achieve a minimum tolerance deviation in their fabrication, due to their vital importance in firing the piece of ammunition where they are built in. This paper outlines a machine vision development for the 100% inspection of percussion caps obtaining data from 2D and 3D simultaneous images. The acquisition speed and precision of these images from a metallic reflective piece as a percussion cap, the accuracy of the measures taken from these images and the multiple fabrication errors detected make the main findings of this work.

Efficient Mean Shift Clustering Using Exponential Integral Kernels

This paper presents a highly efficient algorithm for detecting and tracking humans and objects in video surveillance sequences. Mean shift clustering is applied on backgrounddifferenced image sequences. For efficiency, all calculations are performed on integral images. Novel corresponding exponential integral kernels are introduced to allow the application of nonuniform kernels for clustering, which dramatically increases robustness without giving up the efficiency of the integral data structures. Experimental results demonstrating the power of this approach are presented.

Dissertation by Portfolio - A Break from Traditional Approaches

Much has been written about the difficulties students have with producing traditional dissertations. This includes both native English speakers (L1) and students with English as a second language (L2). The main emphasis of these papers has been on the structure of the dissertation, but in all cases, even when electronic versions are discussed, the dissertation is still in what most would regard as a traditional written form. Master of Science Degrees in computing disciplines require students to gain technical proficiency and apply their knowledge to a range of scenarios. The basis of this paper is that if a dissertation is a means of showing that such a student has met the criteria for a pass, which should be based on the learning outcomes of the dissertation module, does meeting those outcomes require a student to demonstrate their skills in a solely text based form, particularly in a highly technical research project? Could it be possible for a student to produce a series of related artifacts which form a cohesive package that meets the learning out comes of the dissertation?

Extracting Tongue Shape Dynamics from Magnetic Resonance Image Sequences

An important problem in speech research is the automatic extraction of information about the shape and dimensions of the vocal tract during real-time speech production. We have previously developed Southampton dynamic magnetic resonance imaging (SDMRI) as an approach to the solution of this problem.However, the SDMRI images are very noisy so that shape extraction is a major challenge. In this paper, we address the problem of tongue shape extraction, which poses difficulties because this is a highly deforming non-parametric shape. We show that combining active shape models with the dynamic Hough transform allows the tongue shape to be reliably tracked in the image sequence.

Filteristic Soft Lattice Implication Algebras

Applying the idea of soft set theory to lattice implication algebras, the novel concept of (implicative) filteristic soft lattice implication algebras which related to (implicative) filter(for short, (IF-)F-soft lattice implication algebras) are introduced. Basic properties of (IF-)F-soft lattice implication algebras are derived. Two kinds of fuzzy filters (i.e.(2, 2 _qk)((2, 2 _ qk))-fuzzy (implicative) filter) of L are introduced, which are generalizations of fuzzy (implicative) filters. Some characterizations for a soft set to be a (IF-)F-soft lattice implication algebra are provided. Analogously, this idea can be used in other types of filteristic lattice implication algebras (such as fantastic (positive implicative) filteristic soft lattice implication algebras).