Electrical Impedance Imaging Using Eddy Current

Electric impedance imaging is a method of reconstructing spatial distribution of electrical conductivity inside a subject. In this paper, a new method of electrical impedance imaging using eddy current is proposed. The eddy current distribution in the body depends on the conductivity distribution and the magnetic field pattern. By changing the position of magnetic core, a set of voltage differences is measured with a pair of electrodes. This set of voltage differences is used in image reconstruction of conductivity distribution. The least square error minimization method is used as a reconstruction algorithm. The back projection algorithm is used to get two dimensional images. Based on this principle, a measurement system is developed and some model experiments were performed with a saline filled phantom. The shape of each model in the reconstructed image is similar to the corresponding model, respectively. From the results of these experiments, it is confirmed that the proposed method is applicable in the realization of electrical imaging.

Performance Verification of Seismic Design Codes for RC Frames

In this study, a frame work for verification of famous seismic codes is utilized. To verify the seismic codes performance, damage quantity of RC frames is compared with the target performance. Due to the randomness property of seismic design and earthquake loads excitation, in this paper, fragility curves are developed. These diagrams are utilized to evaluate performance level of structures which are designed by the seismic codes. These diagrams further illustrate the effect of load combination and reduction factors of codes on probability of damage exceedance. Two types of structures; very high important structures with high ductility and medium important structures with intermediate ductility are designed by different seismic codes. The Results reveal that usually lower damage ratio generate lower probability of exceedance. In addition, the findings indicate that there are buildings with higher quantity of bars which they have higher probability of damage exceedance. Life-cycle cost analysis utilized for comparison and final decision making process.

Multi-Walled Carbon Nanotubes/Polyacrylonitrile Composite as Novel Semi-Permeable Mixed Matrix Membrane in Reverse Osmosis Water Treatment Process

novel and simple method is introduced for rapid and highly efficient water treatment by reverse osmosis (RO) method using multi-walled carbon nanotubes (MWCNTs) / polyacrylonitrile (PAN) polymer as a flexible, highly efficient, reusable and semi-permeable mixed matrix membrane (MMM). For this purpose, MWCNTs were directly synthesized and on-line purified by chemical vapor deposition (CVD) process, followed by directing the MWCNT bundles towards an ultrasonic bath, in which PAN polymer was simultaneously suspended inside a solid porous silica support in water at temperature to ~70 οC. Fabrication process of MMM was finally completed by hot isostatic pressing (HIP) process. In accordance with the analytical figures of merit, the efficiency of fabricated MMM was ~97%. The rate of water treatment process was also evaluated to 6.35 L min-1. The results reveal that, the CNT-based MMM is suitable for rapid treatment of different forms of industrial, sea, drinking and well water samples.

The use of ICT for Learning Guidance for Junior High School in Indonesia

In this paper, we will be present Guidance and Councelling (GC) class action research. The research was done because a fact that some students are still learning ways such as in elementary school. The research objective is to enhance the value of “academic performance report" grade by using ICT as GC Learning Guidance services. The research method was carried out with two cycles. First cycle is applying Learning Guidance services indirectly and not programmed. Second cycle into two implementing Learning Guidance services indirectly, programmed and using ICTs primarily mobile phones and computer media applications i.e. “m-NingBK©: Learning Guidance" and “screen saver: Learning Guidance". A research subject is a class VII student who has the lowest value of “academic performance report". The result is by using an indirect GC services with ICT there were significant changes.

On the Quality of Internet Users- Behavioral Patterns in Using Different Sites and Its Impact on Taboos of Marriage: A Survey among Undergraduate Students in Mashhad City in Iran

Regarding the multi-media property of internet and the facilities that can be provided for the users, the purpose of this paper is to investigate the users- behavioral patterns and the impact of internet on taboos of marriage. For this purpose a survey technique on the sample size amounted 403 students of governmental guidance schools of city of Mashhad in country of Iran were considered. The results showed, the process of using various internet environments depends on the degree of the users- familiarity with these sites. In order to clarify the effects of the Internet on the taboos of marriage, the non – internet parameters also considered to be controlled. The ttest held among the internet users and non-users, indicated that internet users possess lower taboos of marriage. Extraction of the effects of internet via considering the effects of non-internet parameters, indicate that addiction to the internet, creating a cordial atmosphere, emotional communication, and message attractive factors have significant effects on the family's traditional values.

Urban-Rural Balance, Regional Coordination and Land Transfer in China

It-s difficult for China-s current land transfer institutions limited to county-wide to solve the contradiction between urban-rural development and construction land shortage. On the basis of analyzing China-s construction land transfer system, and evaluation toward Transfer of development rights (TDR) practices in Anhui and Chongqing, the passage proposes: (1) we should establish a multi-level land indicators trade market under the guidance of regional spatial objectives, and allow land transfer paid across cities and counties within a specific area following the regulation of both government and market; (2) it would be better to combine organically the policy ntentions of land plan, regional plan, urban plan and economic plan, and link them with land indicators transfer to promote a wider range of urban-rural balance and regional coordination.

Replacement of Power Transformers basis on Diagnostic Results and Load Forecasting

This paper describes interconnection between technical and economical making decision. The reason of this dealing could be different: poor technical condition, change of substation (electrical network) regime, power transformer owner budget deficit and increasing of tariff on electricity. Establishing of recommended practice as well as to give general advice and guidance in economical sector, testing, diagnostic power transformers to establish its conditions, identify problems and provide potential remedies.

Performance Analysis of MC-SS for the Indoor BPLC Systems

power-line networks are promise infrastructure for broadband services provision to end users. However, the network performance is affected by stochastic channel changing which is due to load impedances, number of branches and branched line lengths. It has been proposed that multi-carrier modulations techniques such as orthogonal frequency division multiplexing (OFDM), Multi-Carrier Spread Spectrum (MC-SS), wavelet OFDM can be used in such environment. This paper investigates the performance of different indoor topologies of power-line networks that uses MC-SS modulation scheme.It is observed that when a branch is added in the link between sending and receiving end of an indoor channel an average of 2.5dB power loss is found. In additional, when the branch is added at a node an average of 1dB power loss is found. Additionally when the terminal impedances of the branch change from line characteristic impedance to impedance either higher or lower values the channel performances were tremendously improved. For example changing terminal load from characteristic impedance (85 .) to 5 . the signal to noise ratio (SNR) required to attain the same performances were decreased from 37dB to 24dB respectively. Also, changing the terminal load from channel characteristic impedance (85 .) to very higher impedance (1600 .) the SNR required to maintain the same performances were decreased from 37dB to 23dB. The result concludes that MC-SS performs better compared with OFDM techniques in all aspects and especially when the channel is terminated in either higher or lower impedances.

A Simulator for Robot Navigation Algorithms

A robot simulator was developed to measure and investigate the performance of a robot navigation system based on the relative position of the robot with respect to random obstacles in any two dimensional environment. The presented simulator focuses on investigating the ability of a fuzzy-neural system for object avoidance. A navigation algorithm is proposed and used to allow random navigation of a robot among obstacles when the robot faces an obstacle in the environment. The main features of this simulator can be used for evaluating the performance of any system that can provide the position of the robot with respect to obstacles in the environment. This allows a robot developer to investigate and analyze the performance of a robot without implementing the physical robot.

Recycling Organic Waste in Suan Sunandha Rajabhat University as Compost

This research aimed to study on the potential of recycling organic waste in Suan Sunandha Rajabhat University as compost. In doing so, the composition of solid waste generated in the campus was investigated while physical and chemical properties of organic waste were analyzed in order to evaluate the portion of waste suitable for recycling as compost. As a result of the study, it was found that (1) the amount of organic waste was averaged at 299.8 kg/day in which mixed food wastes had the highest amount of 191.9 kg/day followed by mixed leave & yard wastes and mixed fruit & vegetable wastes at the amount of 66.3 and 41.6 kg/day respectively; (2) physical and chemical properties of organic waste in terms of moisture content was between 69.54 to 78.15%, major elements for plant as N, P and K were 0.14 to 0.17%, 0.46 to 0.52% and 0.16 to 0.18% respectively, and carbon/nitrogen ratio (C/N) was about 15:1 to 17.5:1; (3) recycling organic waste as compost was designed by aerobic decomposition using mixed food wastes : mixed leave & yard wastes : mixed fruit & vegetable wastes at the portion of 3:2:1 by weight in accordance with the potential of their amounts and their physical and chemical properties.

A Novel Low Power Very Low Voltage High Performance Current Mirror

In this paper a novel high output impedance, low input impedance, wide bandwidth, very simple current mirror with input and output voltage requirements less than that of a simple current mirror is presented. These features are achieved with very simple structure avoiding extra large node impedances to ensure high bandwidth operation. The circuit's principle of operation is discussed and compared to simple and low voltage cascode (LVC) current mirrors. Such outstanding features of this current mirror as high output impedance ~384K, low input impedance~6.4, wide bandwidth~178MHz, low input voltage ~ 362mV, low output voltage ~ 38mV and low current transfer error ~4% (all at 50μA) makes it an outstanding choice for high performance applications. Simulation results in BSIM 0.35μm CMOS technology with HSPICE are given in comparison with simple, and LVC current mirrors to verify and validate the performance of the proposed current mirror.

Accurate Fault Classification and Section Identification Scheme in TCSC Compensated Transmission Line using SVM

This paper presents a new approach for the protection of Thyristor-Controlled Series Compensator (TCSC) line using Support Vector Machine (SVM). One SVM is trained for fault classification and another for section identification. This method use three phase current measurement that results in better speed and accuracy than other SVM based methods which used single phase current measurement. This makes it suitable for real-time protection. The method was tested on 10,000 data instances with a very wide variation in system conditions such as compensation level, source impedance, location of fault, fault inception angle, load angle at source bus and fault resistance. The proposed method requires only local current measurement.

Optimization Method Based MPPT for Wind Power Generators

This paper proposes the method combining artificial neural network with particle swarm optimization (PSO) to implement the maximum power point tracking (MPPT) by controlling the rotor speed of the wind generator. With the measurements of wind speed, rotor speed of wind generator and output power, the artificial neural network can be trained and the wind speed can be estimated. The proposed control system in this paper provides a manner for searching the maximum output power of wind generator even under the conditions of varying wind speed and load impedance.

Lane Changing and Merging Maneuvers of Carlike Robots

This research paper designs a unique motion planner of multiple platoons of nonholonomic car-like robots as a feasible solution to the lane changing/merging maneuvers. The decentralized planner with a leaderless approach and a path-guidance principle derived from the Lyapunov-based control scheme generates collision free avoidance and safe merging maneuvers from multiple lanes to a single lane by deploying a split/merge strategy. The fixed obstacles are the markings and boundaries of the road lanes, while the moving obstacles are the robots themselves. Real and virtual road lane markings and the boundaries of road lanes are incorporated into a workspace to achieve the desired formation and configuration of the robots. Convergence of the robots to goal configurations and the repulsion of the robots from specified obstacles are achieved by suitable attractive and repulsive potential field functions, respectively. The results can be viewed as a significant contribution to the avoidance algorithm of the intelligent vehicle systems (IVS). Computer simulations highlight the effectiveness of the split/merge strategy and the acceleration-based controllers.

Numerical Simulation of the Turbulent Flow over a Three-Dimensional Flat Roof

The flow field over a flat roof model building has been numerically investigated in order to determine threedimensional CFD guidelines for the calculation of the turbulent flow over a structure immersed in an atmospheric boundary layer. To this purpose, a complete validation campaign has been performed through a systematic comparison of numerical simulations with wind tunnel experimental data. Wind tunnel measurements and numerical predictions have been compared for five different vertical positions, respectively from the upstream leading edge to the downstream bottom edge of the analyzed model. Flow field characteristics in the neighborhood of the building model have been numerically investigated, allowing a quantification of the capabilities of the CFD code to predict the flow separation and the extension of the recirculation regions. The proposed calculations have allowed the development of a preliminary procedure to be used as guidance in selecting the appropriate grid configuration and corresponding turbulence model for the prediction of the flow field over a three-dimensional roof architecture dominated by flow separation.

Formation Control of Mobile Robots

In this paper, we study the formation control problem for car-like mobile robots. A team of nonholonomic mobile robots navigate in a terrain with obstacles, while maintaining a desired formation, using a leader-following strategy. A set of artificial potential field functions is proposed using the direct Lyapunov method for the avoidance of obstacles and attraction to their designated targets. The effectiveness of the proposed control laws to verify the feasibility of the model is demonstrated through computer simulations

Impact of Viscous and Heat Relaxation Loss on the Critical Temperature Gradients of Thermoacoustic Stacks

A stack with a small critical temperature gradient is desirable for a standing wave thermoacoustic engine to obtain a low onset temperature difference (the minimum temperature difference to start engine-s self-oscillation). The viscous and heat relaxation loss in the stack determines the critical temperature gradient. In this work, a dimensionless critical temperature gradient factor is obtained based on the linear thermoacoustic theory. It is indicated that the impedance determines the proportion between the viscous loss, heat relaxation losses and the power production from the heat energy. It reveals the effects of the channel dimensions, geometrical configuration and the local acoustic impedance on the critical temperature gradient in stacks. The numerical analysis shows that there exists a possible optimum combination of these parameters which leads to the lowest critical temperature gradient. Furthermore, several different geometries have been tested and compared numerically.

Off-Shore Port Management on the Environmental Issue - Case Study of Sichang Harbor

The research is to minimize environmental damage pertinent to maritime activities about the operation of lighter boat anchorage and its tugboat. The guidance on upgrading current harbor service and infrastructure has been provided to Kho Sichang Municpality. This will involve a study of the maritime logistics of the water area under jurisdiction of the Sichang island Municipality and possible recommendations may involve charging taxes, regulations and fees. With implementing these recommendations will help in protection of the marine environment and in increasing operator functionality. Additionally, our recommendation is to generate a consistent revenue stream to the municipality. The action items contained in this research are feasible and effective, the success of these initiatives are heavily dependent upon successful promotion and enforcement. Promoting new rules and regulations effectively and peacefully can be done through theories and techniques used in the psychology of persuasion. In order to assure compliance with the regulations, the municipality must maintain stringent patrols and fines for violators. In order to become success, the Municipality must preserve a consistent, transparent and significant enforcement system. Considering potential opportunities outside of the current state of the municipality, the authors recommend that Koh Sichang be given additional jurisdiction to capture value from the master vessels, as well as to confront the more significant environmental challenges these vessels pose. Finally, the authors recommend that the Port of Koh Sichang Island obtain a free port status in order to increase economic viability and overall sustainability.

Parameters Identification of Mathematical Model of the Fission Yeast Cell Cycle Control Using Evolutionary Strategy

Complex assemblies of interacting proteins carry out most of the interesting jobs in a cell, such as metabolism, DNA synthesis, mitosis and cell division. These physiological properties play out as a subtle molecular dance, choreographed by underlying regulatory networks that control the activities of cyclin-dependent kinases (CDK). The network can be modeled by a set of nonlinear differential equations and its behavior predicted by numerical simulation. In this paper, an innovative approach has been proposed that uses genetic algorithms to mine a set of behavior data output by a biological system in order to determine the kinetic parameters of the system. In our approach, the machine learning method is integrated with the framework of existent biological information in a wiring diagram so that its findings are expressed in a form of system dynamic behavior. By numerical simulations it has been illustrated that the model is consistent with experiments and successfully shown that such application of genetic algorithms will highly improve the performance of mathematical model of the cell division cycle to simulate such a complicated bio-system.

Solving Partially Monotone Problems with Neural Networks

In many applications, it is a priori known that the target function should satisfy certain constraints imposed by, for example, economic theory or a human-decision maker. Here we consider partially monotone problems, where the target variable depends monotonically on some of the predictor variables but not all. We propose an approach to build partially monotone models based on the convolution of monotone neural networks and kernel functions. The results from simulations and a real case study on house pricing show that our approach has significantly better performance than partially monotone linear models. Furthermore, the incorporation of partial monotonicity constraints not only leads to models that are in accordance with the decision maker's expertise, but also reduces considerably the model variance in comparison to standard neural networks with weight decay.