DJess A Knowledge-Sharing Middleware to Deploy Distributed Inference Systems

In this paper DJess is presented, a novel distributed production system that provides an infrastructure for factual and procedural knowledge sharing. DJess is a Java package that provides programmers with a lightweight middleware by which inference systems implemented in Jess and running on different nodes of a network can communicate. Communication and coordination among inference systems (agents) is achieved through the ability of each agent to transparently and asynchronously reason on inferred knowledge (facts) that might be collected and asserted by other agents on the basis of inference code (rules) that might be either local or transmitted by any node to any other node.

Analysis of CNT Bundle and its Comparison with Copper for FPGAs Interconnects

Each new semiconductor technology node brings smaller transistors and wires. Although this makes transistors faster, wires get slower. In nano-scale regime, the standard copper (Cu) interconnect will become a major hurdle for FPGA interconnect due to their high resistivity and electromigration. This paper presents the comprehensive evaluation of mixed CNT bundle interconnects and investigates their prospects as energy efficient and high speed interconnect for future FPGA routing architecture. All HSPICE simulations are carried out at operating frequency of 1GHz and it is found that mixed CNT bundle implemented in FPGAs as interconnect can potentially provide a substantial delay and energy reduction over traditional interconnects at 32nm process technology.

Attack Defense of DAD in MANET

These days MANET is attracting much attention as they are expected to gratefully influence communication between wireless nodes. Along with this great strength, there is much more chance of leave and being attacked by a malicious node. Due to this reason much attention is given to the security and the private issue in MANET. A lot of research in MANET has been doing. In this paper we present the overview of MANET, the security issues of MANET, IP configuration in MANET, the solution to puzzle out the security issues and the simulation of the proposal idea. We add the method to figure out the malicious nodes so that we can prevent the attack from them. Nodes exchange the information about nodes to prevent DAD attack. We can get 30% better performance than the previous MANETConf.

Wormhole Attack Detection in Wireless Sensor Networks

The nature of wireless ad hoc and sensor networks make them very attractive to attackers. One of the most popular and serious attacks in wireless ad hoc networks is wormhole attack and most proposed protocols to defend against this attack used positioning devices, synchronized clocks, or directional antennas. This paper analyzes the nature of wormhole attack and existing methods of defending mechanism and then proposes round trip time (RTT) and neighbor numbers based wormhole detection mechanism. The consideration of proposed mechanism is the RTT between two successive nodes and those nodes- neighbor number which is needed to compare those values of other successive nodes. The identification of wormhole attacks is based on the two faces. The first consideration is that the transmission time between two wormhole attack affected nodes is considerable higher than that between two normal neighbor nodes. The second detection mechanism is based on the fact that by introducing new links into the network, the adversary increases the number of neighbors of the nodes within its radius. This system does not require any specific hardware, has good performance and little overhead and also does not consume extra energy. The proposed system is designed in ad hoc on-demand distance vector (AODV) routing protocol and analysis and simulations of the proposed system are performed in network simulator (ns-2).

Effective Implementation of Burst SegmentationTechniques in OBS Networks

Optical Bursts Switching (OBS) is a relatively new optical switching paradigm. Contention and burst loss in OBS networks are major concerns. To resolve contentions, an interesting alternative to discarding the entire data burst is to partially drop the burst. Partial burst dropping is based on burst segmentation concept that its implementation is constrained by some technical challenges, besides the complexity added to the algorithms and protocols on both edge and core nodes. In this paper, the burst segmentation concept is investigated, and an implementation scheme is proposed and evaluated. An appropriate dropping policy that effectively manages the size of the segmented data bursts is presented. The dropping policy is further supported by a new control packet format that provides constant transmission overhead.

Peer-to-Peer Epidemic Algorithms for Reliable Multicasting in Ad Hoc Networks

Characteristics of ad hoc networks and even their existence depend on the nodes forming them. Thus, services and applications designed for ad hoc networks should adapt to this dynamic and distributed environment. In particular, multicast algorithms having reliability and scalability requirements should abstain from centralized approaches. We aspire to define a reliable and scalable multicast protocol for ad hoc networks. Our target is to utilize epidemic techniques for this purpose. In this paper, we present a brief survey of epidemic algorithms for reliable multicasting in ad hoc networks, and describe formulations and analytical results for simple epidemics. Then, P2P anti-entropy algorithm for content distribution and our prototype simulation model are described together with our initial results demonstrating the behavior of the algorithm.

An Ontology Abstract Machine

As more people from non-technical backgrounds are becoming directly involved with large-scale ontology development, the focal point of ontology research has shifted from the more theoretical ontology issues to problems associated with the actual use of ontologies in real-world, large-scale collaborative applications. Recently the National Science Foundation funded a large collaborative ontology development project for which a new formal ontology model, the Ontology Abstract Machine (OAM), was developed to satisfy some unique functional and data representation requirements. This paper introduces the OAM model and the related algorithms that enable maintenance of an ontology that supports node-based user access. The successful software implementation of the OAM model and its subsequent acceptance by a large research community proves its validity and its real-world application value.

Thermo-mechanical Deformation Behavior of Functionally Graded Rectangular Plates Subjected to Various Boundary Conditions and Loadings

This paper deals with the thermo-mechanical deformation behavior of shear deformable functionally graded ceramicmetal (FGM) plates. Theoretical formulations are based on higher order shear deformation theory with a considerable amendment in the transverse displacement using finite element method (FEM). The mechanical properties of the plate are assumed to be temperaturedependent and graded in the thickness direction according to a powerlaw distribution in terms of the volume fractions of the constituents. The temperature field is supposed to be a uniform distribution over the plate surface (XY plane) and varied in the thickness direction only. The fundamental equations for the FGM plates are obtained using variational approach by considering traction free boundary conditions on the top and bottom faces of the plate. A C0 continuous isoparametric Lagrangian finite element with thirteen degrees of freedom per node have been employed to accomplish the results. Convergence and comparison studies have been performed to demonstrate the efficiency of the present model. The numerical results are obtained for different thickness ratios, aspect ratios, volume fraction index and temperature rise with different loading and boundary conditions. Numerical results for the FGM plates are provided in dimensionless tabular and graphical forms. The results proclaim that the temperature field and the gradient in the material properties have significant role on the thermo-mechanical deformation behavior of the FGM plates.

Design of Novel SCR-based ESD Protection Device for I/O Clamp in BCD Process

In this paper, a novel LVTSCR-based device for electrostatic discharge (ESD) protection of integrated circuits (ICs) is designed, fabricated and characterized. The proposed device is similar to the conventional LVTSCR but it has an embedded PMOSFET in the anode n-well to enhance the turn on speed, the clamping capability and the robustness. This is possible because the embedded PMOSFET provides the sub-path of ESD discharge current. The TLP, HBM and MM testing are carried out to verify the ESD performance of the proposed devices, which are fabricated in 0.35um (Bipolar-CMOS-DMOS) BCDMOS process. The device has the robustness of 70mA/um that is higher about 60mA/um than the LVTSCR, approximately.

TFRank: An Evaluation of Users Importance with Fractal Views in Social Networks

One of research issues in social network analysis is to evaluate the position/importance of users in social networks. As the information diffusion in social network is evolving, it seems difficult to evaluate the importance of users using traditional approaches. In this paper, we propose an evaluation approach for user importance with fractal view in social networks. In this approach, the global importance (Fractal Importance) and the local importance (Topological Importance) of nodes are considered. The basic idea is that the bigger the product of fractal importance and topological importance of a node is, the more important of the node is. We devise the algorithm called TFRank corresponding to the proposed approach. Finally, we evaluate TFRank by experiments. Experimental results demonstrate our TFRank has the high correlations with PageRank algorithm and potential ranking algorithm, and it shows the effectiveness and advantages of our approach.

Estimating Localization Network Node Positions with a Multi-Robot System

A novel method using bearing-only SLAM to estimate node positions of a localization network is proposed. A group of simple robots are used to estimate the position of each node. Each node has a unique ID, which it can communicate to a robot close by. Initially the node IDs and positions are unknown. A case example using RFID technology in the localization network is introduced.

Energy Efficient Cooperative Caching in WSN

Wireless sensor networks (WSNs) consist of number of tiny, low cost and low power sensor nodes to monitor some physical phenomenon. The major limitation in these networks is the use of non-rechargeable battery having limited power supply. The main cause of energy consumption in such networks is communication subsystem. This paper presents an energy efficient Cluster Cooperative Caching at Sensor (C3S) based upon grid type clustering. Sensor nodes belonging to the same cluster/grid form a cooperative cache system for the node since the cost for communication with them is low both in terms of energy consumption and message exchanges. The proposed scheme uses cache admission control and utility based data replacement policy to ensure that more useful data is retained in the local cache of a node. Simulation results demonstrate that C3S scheme performs better in various performance metrics than NICoCa which is existing cooperative caching protocol for WSNs.

Challenges for Security in Wireless Sensor Networks (WSNs)

Wireless sensor network is formed with the combination of sensor nodes and sink nodes. Recently Wireless sensor network has attracted attention of the research community. The main application of wireless sensor network is security from different attacks both for mass public and military. However securing these networks, by itself is a critical issue due to many constraints like limited energy, computational power and lower memory. Researchers working in this area have proposed a number of security techniques for this purpose. Still, more work needs to be done.In this paper we provide a detailed discussion on security in wireless sensor networks. This paper will help to identify different obstacles and requirements for security of wireless sensor networks as well as highlight weaknesses of existing techniques.

Using Suffix Tree Document Representation in Hierarchical Agglomerative Clustering

In text categorization problem the most used method for documents representation is based on words frequency vectors called VSM (Vector Space Model). This representation is based only on words from documents and in this case loses any “word context" information found in the document. In this article we make a comparison between the classical method of document representation and a method called Suffix Tree Document Model (STDM) that is based on representing documents in the Suffix Tree format. For the STDM model we proposed a new approach for documents representation and a new formula for computing the similarity between two documents. Thus we propose to build the suffix tree only for any two documents at a time. This approach is faster, it has lower memory consumption and use entire document representation without using methods for disposing nodes. Also for this method is proposed a formula for computing the similarity between documents, which improves substantially the clustering quality. This representation method was validated using HAC - Hierarchical Agglomerative Clustering. In this context we experiment also the stemming influence in the document preprocessing step and highlight the difference between similarity or dissimilarity measures to find “closer" documents.

Energy Efficient Reliable Cooperative Multipath Routing in Wireless Sensor Networks

In this paper, a reliable cooperative multipath routing algorithm is proposed for data forwarding in wireless sensor networks (WSNs). In this algorithm, data packets are forwarded towards the base station (BS) through a number of paths, using a set of relay nodes. In addition, the Rayleigh fading model is used to calculate the evaluation metric of links. Here, the quality of reliability is guaranteed by selecting optimal relay set with which the probability of correct packet reception at the BS will exceed a predefined threshold. Therefore, the proposed scheme ensures reliable packet transmission to the BS. Furthermore, in the proposed algorithm, energy efficiency is achieved by energy balancing (i.e. minimizing the energy consumption of the bottleneck node of the routing path) at the same time. This work also demonstrates that the proposed algorithm outperforms existing algorithms in extending longevity of the network, with respect to the quality of reliability. Given this, the obtained results make possible reliable path selection with minimum energy consumption in real time.

Application of Novel Conserving Immersed Boundary Method to Moving Boundary Problem

A new conserving approach in the context of Immersed Boundary Method (IBM) is presented to simulate one dimensional, incompressible flow in a moving boundary problem. The method employs control volume scheme to simulate the flow field. The concept of ghost node is used at the boundaries to conserve the mass and momentum equations. The Present method implements the conservation laws in all cells including boundary control volumes. Application of the method is studied in a test case with moving boundary. Comparison between the results of this new method and a sharp interface (Image Point Method) IBM algorithm shows a well distinguished improvement in both pressure and velocity fields of the present method. Fluctuations in pressure field are fully resolved in this proposed method. This approach expands the IBM capability to simulate flow field for variety of problems by implementing conservation laws in a fully Cartesian grid compared to other conserving methods.

A Mobile Agent-based Clustering Data Fusion Algorithm in WSN

In wireless sensor networks,the mobile agent technology is used in data fusion. According to the node residual energy and the results of partial integration,we design the node clustering algorithm. Optimization of mobile agent in the routing within the cluster strategy for wireless sensor networks to further reduce the amount of data transfer. Through the experiments, using mobile agents in the integration process within the cluster can be reduced the path loss in some extent.

Object Recognition on Horse Riding Simulator System

In recent years, IT convergence technology has been developed to get creative solution by combining robotics or sports science technology. Object detection and recognition have mainly applied to sports science field that has processed by recognizing face and by tracking human body. But object detection and recognition using vision sensor is challenge task in real world because of illumination. In this paper, object detection and recognition using vision sensor applied to sports simulator has been introduced. Face recognition has been processed to identify user and to update automatically a person athletic recording. Human body has tracked to offer a most accurate way of riding horse simulator. Combined image processing has been processed to reduce illumination adverse affect because illumination has caused low performance in detection and recognition in real world application filed. Face has recognized using standard face graph and human body has tracked using pose model, which has composed of feature nodes generated diverse face and pose images. Face recognition using Gabor wavelet and pose recognition using pose graph is robust to real application. We have simulated using ETRI database, which has constructed on horse riding simulator.

Low Energy Method for Data Delivery in Ubiquitous Network

Recent advances in wireless sensor networks have led to many routing methods designed for energy-efficiency in wireless sensor networks. Despite that many routing methods have been proposed in USN, a single routing method cannot be energy-efficient if the environment of the ubiquitous sensor network varies. We present the controlling network access to various hosts and the services they offer, rather than on securing them one by one with a network security model. When ubiquitous sensor networks are deployed in hostile environments, an adversary may compromise some sensor nodes and use them to inject false sensing reports. False reports can lead to not only false alarms but also the depletion of limited energy resource in battery powered networks. The interleaved hop-by-hop authentication scheme detects such false reports through interleaved authentication. This paper presents a LMDD (Low energy method for data delivery) algorithm that provides energy-efficiency by dynamically changing protocols installed at the sensor nodes. The algorithm changes protocols based on the output of the fuzzy logic which is the fitness level of the protocols for the environment.

Connectivity Characteristic of Transcription Factor

Transcription factors are a group of proteins that helps for interpreting the genetic information in DNA. Protein-protein interactions play a major role in the execution of key biological functions of a cell. These interactions are represented in the form of a graph with nodes and edges. Studies have showed that some nodes have high degree of connectivity and such nodes, known as hub nodes, are the inevitable parts of the network. In the present paper a method is proposed to identify hub transcription factor proteins using sequence information. On a complete data set of transcription factor proteins available from the APID database, the proposed method showed an accuracy of 77%, sensitivity of 79% and specificity of 76%.