CT Reconstruction from a Limited Number of X-Ray Projections

Most CT reconstruction system x-ray computed tomography (CT) is a well established visualization technique in medicine and nondestructive testing. However, since CT scanning requires sampling of radiographic projections from different viewing angles, common CT systems with mechanically moving parts are too slow for dynamic imaging, for instance of multiphase flows or live animals. A large number of X-ray projections are needed to reconstruct CT images, so the collection and calculation of the projection data consume too much time and harmful for patient. For the purpose of solving the problem, in this study, we proposed a method for tomographic reconstruction of a sample from a limited number of x-ray projections by using linear interpolation method. In simulation, we presented reconstruction from an experimental x-ray CT scan of a Aluminum phantom that follows to two steps: X-ray projections will be interpolated using linear interpolation method and using it for CT reconstruction based upon Ordered Subsets Expectation Maximization (OSEM) method.

Transformation of Vocal Characteristics: A Review of Literature

The transformation of vocal characteristics aims at modifying voice such that the intelligibility of aphonic voice is increased or the voice characteristics of a speaker (source speaker) to be perceived as if another speaker (target speaker) had uttered it. In this paper, the current state-of-the-art voice characteristics transformation methodology is reviewed. Special emphasis is placed on voice transformation methodology and issues for improving the transformed speech quality in intelligibility and naturalness are discussed. In particular, it is suggested to use the modulation theory of speech as a base for research on high quality voice transformation. This approach allows one to separate linguistic, expressive, organic and perspective information of speech, based on an analysis of how they are fused when speech is produced. Therefore, this theory provides the fundamentals not only for manipulating non-linguistic, extra-/paralinguistic and intra-linguistic variables for voice transformation, but also for paving the way for easily transposing the existing voice transformation methods to emotion-related voice quality transformation and speaking style transformation. From the perspectives of human speech production and perception, the popular voice transformation techniques are described and classified them based on the underlying principles either from the speech production or perception mechanisms or from both. In addition, the advantages and limitations of voice transformation techniques and the experimental manipulation of vocal cues are discussed through examples from past and present research. Finally, a conclusion and road map are pointed out for more natural voice transformation algorithms in the future.

Fuzzy Types Clustering for Microarray Data

The main goal of microarray experiments is to quantify the expression of every object on a slide as precisely as possible, with a further goal of clustering the objects. Recently, many studies have discussed clustering issues involving similar patterns of gene expression. This paper presents an application of fuzzy-type methods for clustering DNA microarray data that can be applied to typical comparisons. Clustering and analyses were performed on microarray and simulated data. The results show that fuzzy-possibility c-means clustering substantially improves the findings obtained by others.

3D CFD Simulation of Thermal Hydraulic Performances on Louvered Fin Automotive Heat Exchangers

This study deals with Computational Fluid Dynamics (CFD) studies of the interactions between the air flow and louvered fins which equipped the automotive heat exchangers. 3D numerical simulation results are obtained by using the ANSYS Fluent 13.0 code and compared to experimental data. The paper studies the effect of louver angle and louver pitch geometrical parameters, on overall thermal hydraulic performances of louvered fins. The comparison between CFD simulations and experimental data show that established 3-D CFD model gives a good agreement. The validation agrees, with about 7% of deviation respectively of friction and Colburn factors to experimental results. As first, it is found that the louver angle has a strong influence on the heat transfer rate. Then, louver angle and louver pitch variation of the louvers and their effects on thermal hydraulic performances are studied. In addition to this study, it is shown that the second half of the fin takes has a significant contribution on pressure drop increase without any increase in heat transfer.

Self-Organization of Clusters having Locally Distributed Patterns for Synchronized Inputs

Many experimental results suggest that more precise spike timing is significant in neural information processing. We construct a self-organization model using the spatiotemporal patterns, where Spike-Timing Dependent Plasticity (STDP) tunes the conduction delays between neurons. We show that the fluctuation of conduction delays causes globally continuous and locally distributed firing patterns through the self-organization.

The Design and Analysis of Learning Effects for a Game-based Learning System

The major purpose of this study is to use network and multimedia technologies to build a game-based learning system for junior high school students to apply in learning “World Geography" through the “role-playing" game approaches. This study first investigated the motivation and habits of junior high school students to use the Internet and online games, and then designed a game-based learning system according to situated and game-based learning theories. A teaching experiment was conducted to analyze the learning effectiveness of students on the game-based learning system and the major factors affecting their learning. A questionnaire survey was used to understand the students- attitudes towards game-based learning. The results showed that the game-based learning system can enhance students- learning, but the gender of students and their habits in using the Internet have no significant impact on learning. Game experience has a significant impact on students- learning, and the higher the experience value the better the effectiveness of their learning. The results of questionnaire survey also revealed that the system can increase students- motivation and interest in learning "World Geography".

Object-Based Image Indexing and Retrieval in DCT Domain using Clustering Techniques

In this paper, we present a new and effective image indexing technique that extracts features directly from DCT domain. Our proposed approach is an object-based image indexing. For each block of size 8*8 in DCT domain a feature vector is extracted. Then, feature vectors of all blocks of image using a k-means algorithm is clustered into groups. Each cluster represents a special object of the image. Then we select some clusters that have largest members after clustering. The centroids of the selected clusters are taken as image feature vectors and indexed into the database. Also, we propose an approach for using of proposed image indexing method in automatic image classification. Experimental results on a database of 800 images from 8 semantic groups in automatic image classification are reported.

Operation Assay of an Industrial Single-Source – Single-Detector Gamma CT Using MCNP4C Code Simulation and Experimental Test Comparisons

A 3D industrial computed tomography (CT) manufactured based on a first generation CT systems, single-source – single-detector, was evaluated. Operation accuracy assessment of the manufactured system was achieved using simulation in comparison with experimental tests. 137Cs and 60Co were used as a gamma source. Simulations were achieved using MCNP4C code. Experimental tests of 137Cs were in good agreement with the simulations

New Wavelet-Based Superresolution Algorithm for Speckle Reduction in SAR Images

This paper describes a novel projection algorithm, the Projection Onto Span Algorithm (POSA) for wavelet-based superresolution and removing speckle (in wavelet domain) of unknown variance from Synthetic Aperture Radar (SAR) images. Although the POSA is good as a new superresolution algorithm for image enhancement, image metrology and biometric identification, here one will use it like a tool of despeckling, being the first time that an algorithm of super-resolution is used for despeckling of SAR images. Specifically, the speckled SAR image is decomposed into wavelet subbands; POSA is applied to the high subbands, and reconstruct a SAR image from the modified detail coefficients. Experimental results demonstrate that the new method compares favorably to several other despeckling methods on test SAR images.

Inferring Hierarchical Pronunciation Rules from a Phonetic Dictionary

This work presents a new phonetic transcription system based on a tree of hierarchical pronunciation rules expressed as context-specific grapheme-phoneme correspondences. The tree is automatically inferred from a phonetic dictionary by incrementally analyzing deeper context levels, eventually representing a minimum set of exhaustive rules that pronounce without errors all the words in the training dictionary and that can be applied to out-of-vocabulary words. The proposed approach improves upon existing rule-tree-based techniques in that it makes use of graphemes, rather than letters, as elementary orthographic units. A new linear algorithm for the segmentation of a word in graphemes is introduced to enable outof- vocabulary grapheme-based phonetic transcription. Exhaustive rule trees provide a canonical representation of the pronunciation rules of a language that can be used not only to pronounce out-of-vocabulary words, but also to analyze and compare the pronunciation rules inferred from different dictionaries. The proposed approach has been implemented in C and tested on Oxford British English and Basic English. Experimental results show that grapheme-based rule trees represent phonetically sound rules and provide better performance than letter-based rule trees.

Hybridizing Genetic Algorithm with Biased Chance Local Search

This paper explores university course timetabling problem. There are several characteristics that make scheduling and timetabling problems particularly difficult to solve: they have huge search spaces, they are often highly constrained, they require sophisticated solution representation schemes, and they usually require very time-consuming fitness evaluation routines. Thus standard evolutionary algorithms lack of efficiency to deal with them. In this paper we have proposed a memetic algorithm that incorporates the problem specific knowledge such that most of chromosomes generated are decoded into feasible solutions. Generating vast amount of feasible chromosomes makes the progress of search process possible in a time efficient manner. Experimental results exhibit the advantages of the developed Hybrid Genetic Algorithm than the standard Genetic Algorithm.

Experimental Tests of a Vertical-Axis Wind Turbine with Twisted Blades

An experimental campaign of measurements for a Darrieus vertical-axis wind turbine (VAWT) is presented for open field conditions. The turbine is characterized by a twisted bladed design, each blade being placed at a fixed distance from the rotational shaft. The experimental setup to perform the acquisitions is described. The results are lower than expected, due to the high influence of the wind shear.

Qualitative Parametric Comparison of Load Balancing Algorithms in Parallel and Distributed Computing Environment

Decrease in hardware costs and advances in computer networking technologies have led to increased interest in the use of large-scale parallel and distributed computing systems. One of the biggest issues in such systems is the development of effective techniques/algorithms for the distribution of the processes/load of a parallel program on multiple hosts to achieve goal(s) such as minimizing execution time, minimizing communication delays, maximizing resource utilization and maximizing throughput. Substantive research using queuing analysis and assuming job arrivals following a Poisson pattern, have shown that in a multi-host system the probability of one of the hosts being idle while other host has multiple jobs queued up can be very high. Such imbalances in system load suggest that performance can be improved by either transferring jobs from the currently heavily loaded hosts to the lightly loaded ones or distributing load evenly/fairly among the hosts .The algorithms known as load balancing algorithms, helps to achieve the above said goal(s). These algorithms come into two basic categories - static and dynamic. Whereas static load balancing algorithms (SLB) take decisions regarding assignment of tasks to processors based on the average estimated values of process execution times and communication delays at compile time, Dynamic load balancing algorithms (DLB) are adaptive to changing situations and take decisions at run time. The objective of this paper work is to identify qualitative parameters for the comparison of above said algorithms. In future this work can be extended to develop an experimental environment to study these Load balancing algorithms based on comparative parameters quantitatively.

Kernel’s Parameter Selection for Support Vector Domain Description

Support Vector Domain Description (SVDD) is one of the best-known one-class support vector learning methods, in which one tries the strategy of using balls defined on the feature space in order to distinguish a set of normal data from all other possible abnormal objects. As all kernel-based learning algorithms its performance depends heavily on the proper choice of the kernel parameter. This paper proposes a new approach to select kernel's parameter based on maximizing the distance between both gravity centers of normal and abnormal classes, and at the same time minimizing the variance within each class. The performance of the proposed algorithm is evaluated on several benchmarks. The experimental results demonstrate the feasibility and the effectiveness of the presented method.

Determination of Required Ion Exchange Solution for Stabilizing Clayey Soils with Various PI

Soil stabilization has been widely used to improve soil strength and durability or to prevent erosion and dust generation. Generally to reduce problems of clayey soils in engineering work and to stabilize these soils additional materials are used. The most common materials are lime, fly ash and cement. Using this materials, although improve soil property , but in some cases due to financial problems and the need to use special equipment are limited .One of the best methods for stabilization clayey soils is neutralization the clay particles. For this purpose we can use ion exchange materials. Ion exchange solution like CBR plus can be used for soil stabilization. One of the most important things in using CBR plus is determination the amount of this solution for various soils with different properties. In this study a laboratory experiment is conduct to evaluate the ion exchange capacity of three soils with various plasticity index (PI) to determine amount or required CBR plus solution for soil stabilization.

Water Vapor Plasma Torch: Design, Characteristics and Applications

The atmospheric pressure plasma torch with a direct current arc discharge stabilized by water vapor vortex was experimentally investigated. Overheated up to 450K water vapor was used as plasma forming gas. Plasma torch design is one of the most important factors leading to a stable operation of the device. The electrical and thermal characteristics of the plasma torch were determined during the experimental investigations. The design and the basic characteristics of the water vapor plasma torch are presented in the paper. Plasma torches with the electric arc stabilized by water vapor vortex provide special performance characteristics in some plasma processing applications such as thermal plasma neutralization and destruction of organic wastes enabling to extract high caloric value synthesis gas as by-product of the process. Syngas could be used as a surrogate fuel partly replacing the dependence on the fossil fuels or used as a feedstock for hydrogen, methanol production.

Sustainable Design of Impinging Premixed Slot Jets

Cooktop burners are widely used nowadays. In cooktop burner design, nozzle efficiency and greenhouse gas(GHG) emissions mainly depend on heat transfer from the premixed flame to the impinging surface. This is a complicated issue depending on the individual and combined effects of various input combustion variables. Optimal operating conditions for sustainable burner design were rarely addressed, especially in the case of multiple slot-jet burners. Through evaluating the optimal combination of combustion conditions for a premixed slot-jet array, this paper develops a practical approach for the sustainable design of gas cooktop burners. Efficiency, CO and NOx emissions in respect of an array of slot jets using premixed flames were analysed. Response surface experimental design were applied to three controllable factors of the combustion process, viz. Reynolds number, equivalence ratio and jet-to-vessel distance. Desirability Function Approach(DFA) is the analytic technique used for the simultaneous optimization of the efficiency and emission responses.

Interaction Effect of Feed Rate and Cutting Speed in CNC-Turning on Chip Micro-Hardness of 304- Austenitic Stainless Steel

The present work is concerned with the effect of turning process parameters (cutting speed, feed rate, and depth of cut) and distance from the center of work piece as input variables on the chip micro-hardness as response or output. Three experiments were conducted; they were used to investigate the chip micro-hardness behavior at diameter of work piece for 30[mm], 40[mm], and 50[mm]. Response surface methodology (R.S.M) is used to determine and present the cause and effect of the relationship between true mean response and input control variables influencing the response as a two or three dimensional hyper surface. R.S.M has been used for designing a three factor with five level central composite rotatable factors design in order to construct statistical models capable of accurate prediction of responses. The results obtained showed that the application of R.S.M can predict the effect of machining parameters on chip micro-hardness. The five level factorial designs can be employed easily for developing statistical models to predict chip micro-hardness by controllable machining parameters. Results obtained showed that the combined effect of cutting speed at it?s lower level, feed rate and depth of cut at their higher values, and larger work piece diameter can result increasing chi micro-hardness.

Fracture Toughness Characterization of Carbon-Epoxy Composite using Arcan Specimen

In this study the behavior of interlaminar fracture of carbon-epoxy thermoplastic laminated composite is investigated numerically and experimentally. Tests are performed with Arcan specimens. Testing with Arcan specimen gives the opportunity of utilizing just one kind of specimen for extracting fracture properties for mode I, mode II and different mixed mode ratios of materials with exerting load via different loading angles. Variation of loading angles in range of 0-90° made possible to achieve different mixed mode ratios. Correction factors for various conditions are obtained from ABAQUS 2D finite element models which demonstrate the finite shape of Arcan specimens used in this study. Finally, applying the correction factors to critical loads obtained experimentally, critical interlaminar fracture toughness of this type of carbon- epoxy composite has been attained.

Study of the Appropriate Factors for Laminated Bamboo Bending by Design of Experiments

This research studied the appropriate factors and conditions for laminated bamboo bending by Design of Experiments (DOE). The interested factors affecting the spring back in laminates bamboo were (1) time, (2) thickness, and (3) frequency. This experiment tested the specimen by using high frequency machine and measured its spring back immediately and next 24 hours for comparing the spring back ratio. Results from the experiments showed that significant factors having major influence to bending of laminates bamboo were thickness and frequency. The appropriate conditions of thickness and frequency were 4 mm. and 1.5 respectively.