Designing and Manufacturing High Voltage Pulse Generator with Adjustable Pulse and Monitoring Current and Voltage: Food Processing Application

Using strength Pulse Electrical Field (PEF) in food industries is a non-thermal process that can deactivate microorganisms and increase penetration in plant and animals tissues without serious impact on food taste and quality. In this paper designing and fabricating of a PEF generator has been presented. Pulse generation methods have been surveyed and the best of them selected. The equipment by controller set can generate square pulse with adjustable parameters such as amplitude 1-5kV, frequency 0.1-10Hz, pulse width 10-100s, and duty cycle 0-100%. Setting the number of pulses, and presenting the output voltage and current waveforms on the oscilloscope screen are another advantages of this equipment. Finally, some food samples were tested that yielded the satisfactory results. PEF applying had considerable effects on potato, banana and purple cabbage. It caused increase Brix factor from 0.05 to 0.15 in potato solution. It is also so effective in extraction color material from purple cabbage. In the last experiment effects of PEF voltages on color extraction of saffron scum were surveyed (about 6% increasing yield).

Factors Influencing Knowledge Management Process Model: A Case Study of Manufacturing Industry in Thailand

The objectives of this research were to explore factors influencing knowledge management process in the manufacturing industry and develop a model to support knowledge management processes. The studied factors were technology infrastructure, human resource, knowledge sharing, and the culture of the organization. The knowledge management processes included discovery, capture, sharing, and application. Data were collected through questionnaires and analyzed using multiple linear regression and multiple correlation. The results found that technology infrastructure, human resource, knowledge sharing, and culture of the organization influenced the discovery and capture processes. However, knowledge sharing had no influence in sharing and application processes. A model to support knowledge management processes was developed, which indicated that sharing knowledge needed further improvement in the organization.

An Enhanced Slicing Algorithm Using Nearest Distance Analysis for Layer Manufacturing

Although the STL (stereo lithography) file format is widely used as a de facto industry standard in the rapid prototyping industry due to its simplicity and ability to tessellation of almost all surfaces, but there are always some defects and shortcoming in their usage, which many of them are difficult to correct manually. In processing the complex models, size of the file and its defects grow extremely, therefore, correcting STL files become difficult. In this paper through optimizing the exiting algorithms, size of the files and memory usage of computers to process them will be reduced. In spite of type and extent of the errors in STL files, the tail-to-head searching method and analysis of the nearest distance between tails and heads techniques were used. As a result STL models sliced rapidly, and fully closed contours produced effectively and errorless.

Logistics Outsourcing: Performance Models and Financial and Operational Indicators

The growing outsourcing of logistics services resulting from the ongoing current in firms of costs reduction/increased efficiency means that it is becoming more and more important for the companies doing the outsourcing to carry out a proper evaluation. The multiple definitions and measures of logistics service performance found in research on the topic create a certain degree of confusion and do not clear the way towards the proper measurement of their performance. Do a model and a specific set of indicators exist that can be considered appropriate for measuring the performance of logistics services outsourcing in industrial environments? Are said indicators in keeping with the objectives pursued by outsourcing? We aim to answer these and other research questions in the study we have initiated in the field within the framework of the international High Performance Manufacturing (HPM) project of which this paper forms part. As the first stage of this research, this paper reviews articles dealing with the topic published in the last 15 years with the aim of detecting the models most used to make this measurement and determining which performance indicators are proposed as part of said models and which are most used. The first steps are also taken in determining whether these indicators, financial and operational, cover the aims that are being pursued when outsourcing logistics services. The findings show there is a wide variety of both models and indicators used. This would seem to testify to the need to continue with our research in order to try to propose a model and a set of indicators for measuring the performance of logistics services outsourcing in industrial environments.

Problems and Obstacles to Value Creation of Thai Monk-s Bowls: The Case Study of Ban-Baat Village, Bangkok

This research aims to study value-creation process of producing monk-s bowls, Thai traditional handicrafts, which is facing problems in adapting to the changing society. It also aims to identify problems and obstacles to value creation. This research is based on a case study of monk-s bowl manufactures from Ban-Baat Village, Bangkok. The conceptual framework is based on the model of value chain to analyze the process. The research methodology is qualitative. This research found that the value-creation process of monk-s bowls consists of eight activities contributing to adding value to the products and increasing profits to the producers in return. Five major problems and obstacles are found. The research suggests that these problems and obstacles limit the manufacturers- potential for creating more valued product and lead to business stagnation. These problems should be addressed and solved with collaboration among the government, the private sector and the manufacturers.

P-ACO Approach to Assignment Problem in FMSs

One of the most important problems in production planning of flexible manufacturing system (FMS) is machine tool selection and operation allocation problem that directly influences the production costs and times .In this paper minimizing machining cost, set-up cost and material handling cost as a multi-objective problem in flexible manufacturing systems environment are considered. We present a 0-1 integer linear programming model for the multiobjective machine tool selection and operation allocation problem and due to the large scale nature of the problem, solving the problem to obtain optimal solution in a reasonable time is infeasible, Paretoant colony optimization (P-ACO) approach for solving the multiobjective problem in reasonable time is developed. Experimental results indicate effectiveness of the proposed algorithm for solving the problem.

Flour and Bread Quality of Spring Spelt

The article contains results of the flour and bread quality assessment from the grains of spring spelt, also called as an ancient wheat. Spelt was cultivated on heavy and medium soils observing principles of organic farming. Based on flour and bread laboratory studies, as well as laboratory baking, the technological usefulness of studied flour has been determined. These results were referred to the standard derived from common wheat cultivated in the same conditions. Grain of spring spelt is a good raw material for manufacturing bread flour, from which to get high-quality bakery products, but this is strictly dependent on the variety of ancient wheat.

Application of Pearson Parametric Distribution Model in Fatigue Life Reliability Evaluation

The aim of this paper is to introduce a parametric distribution model in fatigue life reliability analysis dealing with variation in material properties. Service loads in terms of responsetime history signal of Belgian pave were replicated on a multi-axial spindle coupled road simulator and stress-life method was used to estimate the fatigue life of automotive stub axle. A PSN curve was obtained by monotonic tension test and two-parameter Weibull distribution function was used to acquire the mean life of the component. A Pearson system was developed to evaluate the fatigue life reliability by considering stress range intercept and slope of the PSN curve as random variables. Considering normal distribution of fatigue strength, it is found that the fatigue life of the stub axle to have the highest reliability between 10000 – 15000 cycles. Taking into account the variation of material properties associated with the size effect, machining and manufacturing conditions, the method described in this study can be effectively applied in determination of probability of failure of mass-produced parts.

On the Standardizing the Metal Die of Punchand Matrix by Mechanical Desktop Software

In industry, on of the most important subjects is die and it's characteristics in which for cutting and forming different mechanical pieces, various punch and matrix metal die are used. whereas the common parts which form the main frame die are not often proportion with pieces and dies therefore using a part as socalled common part for frames in specified dimension ranges can decrease the time of designing, occupied space of warehouse and manufacturing costs. Parts in dies with getting uniform in their shape and dimension make common parts of dies. Common parts of punch and matrix metal die are as bolster, guide bush, guide pillar and shank. In this paper the common parts and effective parameters in selecting each of them as the primary information are studied, afterward for selection and design of mechanical parts an introduction and investigation based on the Mech. Desk. software is done hence with developing this software can standardize the metal common parts of punch and matrix. These studies will be so useful for designer in their designing and also using it has with very much advantage for manufactures of products in decreasing occupied spaces by dies.

From Hype to Ignorance – A Review of 30 Years of Lean Production

Lean production (or lean management respectively) gained popularity in several waves. The last three decades have been filled with numerous attempts to apply these concepts in companies. However, this has only been partially successful. The roots of lean production can be traced back to Toyota-s just-in-time production. This concept, which according to Womack-s, Jones- and Roos- research at MIT was employed by Japanese car manufacturers, became popular under its international names “lean production", “lean-manufacturing" and was termed “Schlanke Produktion" in Germany. This contribution shows a review about lean production in Germany over the last thirty years: development, trial & error and implementation as well.

Solving Part Type Selection and Loading Problem in Flexible Manufacturing System Using Real Coded Genetic Algorithms – Part I: Modeling

This paper and its companion (Part 2) deal with modeling and optimization of two NP-hard problems in production planning of flexible manufacturing system (FMS), part type selection problem and loading problem. The part type selection problem and the loading problem are strongly related and heavily influence the system-s efficiency and productivity. The complexity of the problems is harder when flexibilities of operations such as the possibility of operation processed on alternative machines with alternative tools are considered. These problems have been modeled and solved simultaneously by using real coded genetic algorithms (RCGA) which uses an array of real numbers as chromosome representation. These real numbers can be converted into part type sequence and machines that are used to process the part types. This first part of the papers focuses on the modeling of the problems and discussing how the novel chromosome representation can be applied to solve the problems. The second part will discuss the effectiveness of the RCGA to solve various test bed problems.

Integrating Big Island Layout with Pull System for Production Optimization

Lean manufacturing is a production philosophy made popular by Toyota Motor Corporation (TMC). It is globally known as the Toyota Production System (TPS) and has the ultimate aim of reducing cost by thoroughly eliminating wastes or muda. TPS embraces the Just-in-time (JIT) manufacturing; achieving cost reduction through lead time reduction. JIT manufacturing can be achieved by implementing Pull system in the production. Furthermore, TPS aims to improve productivity and creating continuous flow in the production by arranging the machines and processes in cellular configurations. This is called as Cellular Manufacturing Systems (CMS). This paper studies on integrating the CMS with the Pull system to establish a Big Island-Pull system production for High Mix Low Volume (HMLV) products in an automotive component industry. The paper will use the build-in JIT system steps adapted from TMC to create the Pull system production and also create a shojinka line which, according to takt time, has the flexibility to adapt to demand changes simply by adding and taking out manpower. This will lead to optimization in production.

Methods for Manufacture of Corrugated Wire Mesh Laminates

Corrugated wire mesh laminates (CWML) are a class of engineered open cell structures that have potential for applications in many areas including aerospace and biomedical engineering. Two different methods of fabricating corrugated wire mesh laminates from stainless steel, one using a high temperature Lithobraze alloy and the other using a low temperature Eutectic solder for joining the corrugated wire meshes are described herein. Their implementation is demonstrated by manufacturing CWML samples of 304 and 316 stainless steel (SST). It is seen that due to the facility of employing wire meshes of different densities and wire diameters, it is possible to create CWML laminates with a wide range of effective densities. The fabricated laminates are tested under uniaxial compression. The variation of the compressive yield strength with relative density of the CWML is compared to the theory developed by Gibson and Ashby for open cell structures [22]. It is shown that the compressive strength of the corrugated wire mesh laminates can be described using the same equations by using an appropriate value for the linear coefficient in the Gibson-Ashby model.

Investigating the Treatability of a Compost Leachate in a Hybrid Anaerobic Reactor: An Experimental Study

Compost manufacturing plants are one of units where wastewater is produced in significantly large amounts. Wastewater produced in these plants contains high amounts of substrate (organic loads) and is classified as stringent waste which creates significant pollution when discharged into the environment without treatment. A compost production plant in the one of the Iran-s province treating 200 tons/day of waste is one of the most important environmental pollutant operations in this zone. The main objectives of this paper are to investigate the compost wastewater treatability in hybrid anaerobic reactors with an upflow-downflow arrangement, to determine the kinetic constants, and eventually to obtain an appropriate mathematical model. After starting the hybrid anaerobic reactor of the compost production plant, the average COD removal rate efficiency was 95%.

Investigation of Layer Thickness and Surface Roughness on Aerodynamic Coefficients of Wind Tunnel RP Models

Traditional wind tunnel models are meticulously machined from metal in a process that can take several months. While very precise, the manufacturing process is too slow to assess a new design's feasibility quickly. Rapid prototyping technology makes this concurrent study of air vehicle concepts via computer simulation and in the wind tunnel possible. This paper described the Affects layer thickness models product with rapid prototyping on Aerodynamic Coefficients for Constructed wind tunnel testing models. Three models were evaluated. The first model was a 0.05mm layer thickness and Horizontal plane 0.1μm (Ra) second model was a 0.125mm layer thickness and Horizontal plane 0.22μm (Ra) third model was a 0.15mm layer thickness and Horizontal plane 4.6μm (Ra). These models were fabricated from somos 18420 by a stereolithography (SLA). A wing-body-tail configuration was chosen for the actual study. Testing covered the Mach range of Mach 0.3 to Mach 0.9 at an angle-of-attack range of -2° to +12° at zero sideslip. Coefficients of normal force, axial force, pitching moment, and lift over drag are shown at each of these Mach numbers. Results from this study show that layer thickness does have an effect on the aerodynamic characteristics in general; the data differ between the three models by fewer than 5%. The layer thickness does have more effect on the aerodynamic characteristics when Mach number is decreased and had most effect on the aerodynamic characteristics of axial force and its derivative coefficients.

Effect of Coal on Engineering Properties in Building Materials: Opportunity to Manufacturing Insulating Bricks

The objective of this study is to investigate the effect of adding coal to obtain insulating ceramic product. The preparation of mixtures is achieved with 04 types of different masse compositions, consisting of gray and yellow clay, and coal. Analyses are performed on local raw materials by adding coal as additive. The coal content varies from 5 to 20 % in weight by varying the size of coal particles ranging from 0.25mm to 1.60mm. Initially, each natural moisture content of a raw material has been determined at the temperature of 105°C in a laboratory oven. The Influence of low-coal content on absorption, the apparent density, the contraction and the resistance during compression have been evaluated. The experimental results showed that the optimized composition could be obtained by adding 10% by weight of coal leading thus to insulating ceramic products with water absorption, a density and resistance to compression of 9.40 %, 1.88 g/cm3, 35.46 MPa, respectively. The results show that coal, when mixed with traditional raw materials, offers the conditions to be used as an additive in the production of lightweight ceramic products.

Analysis of Capillary Coating Die Flow in an Optical Fiber Coating Applicator

Viscous heating becomes significant in the high speed resin coating process of glass fibers for optical fiber manufacturing. This study focuses on the coating resin flows inside the capillary coating die of optical fiber coating applicator and they are numerically simulated to examine the effects of viscous heating and subsequent temperature increase in coating resin. Resin flows are driven by fast moving glass fiber and the pressurization at the coating die inlet, while the temperature dependent viscosity of liquid coating resin plays an important role in the resin flow. It is found that the severe viscous heating near the coating die wall profoundly alters the radial velocity profiles and that the increase of final coating thickness by die pressurization is amplified if viscous heating is present.

Real-Time Testing of Steel Strip Welds based on Bayesian Decision Theory

One of the main trouble in a steel strip manufacturing line is the breakage of whatever weld carried out between steel coils, that are used to produce the continuous strip to be processed. A weld breakage results in a several hours stop of the manufacturing line. In this process the damages caused by the breakage must be repaired. After the reparation and in order to go on with the production it will be necessary a restarting process of the line. For minimizing this problem, a human operator must inspect visually and manually each weld in order to avoid its breakage during the manufacturing process. The work presented in this paper is based on the Bayesian decision theory and it presents an approach to detect, on real-time, steel strip defective welds. This approach is based on quantifying the tradeoffs between various classification decisions using probability and the costs that accompany such decisions.

Government Initiatives: The Missing Key for E-commerce Growth in KSA

This paper explores the issues that influence online retailing in Saudi Arabia. Retailers in Saudi Arabia have been reserved in their adoption of electronically delivered aspects of their business. Despite the fact that Saudi Arabia has the largest and fastest growth of ICT marketplaces in the Arab region, e-commerce activities are not progressing at the same speed. Only very few Saudi companies, mostly medium and large companies from the manufacturing sector, are involved in e-commerce implementation. Based on qualitative data collected by conducting interviews with 16 retailers and 16 potential customers in Saudi Arabia, several factors influencing online retailing diffusion in Saudi Arabia are identified. However, government support comes the highest and most influencing factor for online retailing growth as identified by both parties; retailers and potential customers in Saudi Arabia.

Compact Planar Antenna for UWB Applications

In this paper, a planar antenna for UWB applications has been proposed. The antenna consists of a square patch, a partial ground plane and a slot on the ground plane. The proposed antenna is easy to be integrated with microwave circuitry for low manufacturing cost. The flat type antenna has a compact structure and the total size is 14.5×14.5mm2. The result shows that the impedance bandwidth (VSWR≤ 2) of the proposed antenna is 12.49 GHz (2.95 to 15.44 GHz), which is equivalent to 135.8%. Details of the proposed compact planar UWB antenna design is presented and discussed.