On The Analysis of a Compound Neural Network for Detecting Atrio Ventricular Heart Block (AVB) in an ECG Signal

Heart failure is the most common reason of death nowadays, but if the medical help is given directly, the patient-s life may be saved in many cases. Numerous heart diseases can be detected by means of analyzing electrocardiograms (ECG). Artificial Neural Networks (ANN) are computer-based expert systems that have proved to be useful in pattern recognition tasks. ANN can be used in different phases of the decision-making process, from classification to diagnostic procedures. This work concentrates on a review followed by a novel method. The purpose of the review is to assess the evidence of healthcare benefits involving the application of artificial neural networks to the clinical functions of diagnosis, prognosis and survival analysis, in ECG signals. The developed method is based on a compound neural network (CNN), to classify ECGs as normal or carrying an AtrioVentricular heart Block (AVB). This method uses three different feed forward multilayer neural networks. A single output unit encodes the probability of AVB occurrences. A value between 0 and 0.1 is the desired output for a normal ECG; a value between 0.1 and 1 would infer an occurrence of an AVB. The results show that this compound network has a good performance in detecting AVBs, with a sensitivity of 90.7% and a specificity of 86.05%. The accuracy value is 87.9%.

Simulation and Parameterization by the Finite Element Method of a C Shape Delectromagnet for Application in the Characterization of Magnetic Properties of Materials

This article presents the simulation, parameterization and optimization of an electromagnet with the C–shaped configuration, intended for the study of magnetic properties of materials. The electromagnet studied consists of a C-shaped yoke, which provides self–shielding for minimizing losses of magnetic flux density, two poles of high magnetic permeability and power coils wound on the poles. The main physical variable studied was the static magnetic flux density in a column within the gap between the poles, with 4cm2 of square cross section and a length of 5cm, seeking a suitable set of parameters that allow us to achieve a uniform magnetic flux density of 1x104 Gaussor values above this in the column, when the system operates at room temperature and with a current consumption not exceeding 5A. By means of a magnetostatic analysis by the finite element method, the magnetic flux density and the distribution of the magnetic field lines were visualized and quantified. From the results obtained by simulating an initial configuration of electromagnet, a structural optimization of the geometry of the adjustable caps for the ends of the poles was performed. The magnetic permeability effect of the soft magnetic materials used in the poles system, such as low– carbon steel (0.08% C), Permalloy (45% Ni, 54.7% Fe) and Mumetal (21.2% Fe, 78.5% Ni), was also evaluated. The intensity and uniformity of the magnetic field in the gap showed a high dependence with the factors described above. The magnetic field achieved in the column was uniform and its magnitude ranged between 1.5x104 Gauss and 1.9x104 Gauss according to the material of the pole used, with the possibility of increasing the magnetic field by choosing a suitable geometry of the cap, introducing a cooling system for the coils and adjusting the spacing between the poles. This makes the device a versatile and scalable tool to generate the magnetic field necessary to perform magnetic characterization of materials by techniques such as vibrating sample magnetometry (VSM), Hall-effect, Kerr-effect magnetometry, among others. Additionally, a CAD design of the modules of the electromagnet is presented in order to facilitate the construction and scaling of the physical device.

A Methodology for Reducing the BGP Convergence Time

Border Gateway Protocol (BGP) is the standard routing protocol between various autonomous systems (AS) in the internet. In the event of failure, a considerable delay in the BGP convergence has been shown by empirical measurements. During the convergence time the BGP will repeatedly advertise new routes to some destination and withdraw old ones until it reach a stable state. It has been found that the KEEPALIVE message timer and the HOLD time are tow parameters affecting the convergence speed. This paper aims to find the optimum value for the KEEPALIVE timer and the HOLD time that maximally reduces the convergence time without increasing the traffic. The KEEPALIVE message timer optimal value founded by this paper is 30 second instead of 60 seconds, and the optimal value for the HOLD time is 90 seconds instead of 180 seconds.

Semantic Mobility Channel (SMC): Ubiquitous and Mobile Computing Meets the Semantic Web

With the advent of emerging personal computing paradigms such as ubiquitous and mobile computing, Web contents are becoming accessible from a wide range of mobile devices. Since these devices do not have the same rendering capabilities, Web contents need to be adapted for transparent access from a variety of client agents. Such content adaptation is exploited for either an individual element or a set of consecutive elements in a Web document and results in better rendering and faster delivery to the client device. Nevertheless, Web content adaptation sets new challenges for semantic markup. This paper presents an advanced components platform, called SMC, enabling the development of mobility applications and services according to a channel model based on the principles of Services Oriented Architecture (SOA). It then goes on to describe the potential for integration with the Semantic Web through a novel framework of external semantic annotation that prescribes a scheme for representing semantic markup files and a way of associating Web documents with these external annotations. The role of semantic annotation in this framework is to describe the contents of individual documents themselves, assuring the preservation of the semantics during the process of adapting content rendering. Semantic Web content adaptation is a way of adding value to Web contents and facilitates repurposing of Web contents (enhanced browsing, Web Services location and access, etc).

Solving Part Type Selection and Loading Problem in Flexible Manufacturing System Using Real Coded Genetic Algorithms – Part II: Optimization

This paper presents modeling and optimization of two NP-hard problems in flexible manufacturing system (FMS), part type selection problem and loading problem. Due to the complexity and extent of the problems, the paper was split into two parts. The first part of the papers has discussed the modeling of the problems and showed how the real coded genetic algorithms (RCGA) can be applied to solve the problems. This second part discusses the effectiveness of the RCGA which uses an array of real numbers as chromosome representation. The novel proposed chromosome representation produces only feasible solutions which minimize a computational time needed by GA to push its population toward feasible search space or repair infeasible chromosomes. The proposed RCGA improves the FMS performance by considering two objectives, maximizing system throughput and maintaining the balance of the system (minimizing system unbalance). The resulted objective values are compared to the optimum values produced by branch-and-bound method. The experiments show that the proposed RCGA could reach near optimum solutions in a reasonable amount of time.

Examination of Self and Decision Making Levels of Students Receiving Education in Schools of Physical Education and Sports

The purpose of this study is to examine the self and decision making levels of students receiving education in schools of physical training and sports. The population of the study consisted 258 students, among which 152 were male and 106 were female ( X age=19,3713 + 1,6968), that received education in the schools of physical education and sports of Selcuk University, Inonu University, Gazi University and Karamanoglu Mehmetbey University. In order to achieve the purpose of the study, the Melbourne Decision Making Questionnary developed by Mann et al. (1998) [1] and adapted to Turkish by Deniz (2004) [2] and the Self-Esteem Scale developed by Aricak (1999) [3] was utilized. For analyzing and interpreting data Kolmogorov-Smirnov test, t-test and one way anova test were used, while for determining the difference between the groups Tukey test and Multiple Linear Regression test were employed and significance was accepted at P

Comparison Analysis of the Wald-s and the Bayes Type Sequential Methods for Testing Hypotheses

The Comparison analysis of the Wald-s and Bayestype sequential methods for testing hypotheses is offered. The merits of the new sequential test are: universality which consists in optimality (with given criteria) and uniformity of decision-making regions for any number of hypotheses; simplicity, convenience and uniformity of the algorithms of their realization; reliability of the obtained results and an opportunity of providing the errors probabilities of desirable values. There are given the Computation results of concrete examples which confirm the above-stated characteristics of the new method and characterize the considered methods in regard to each other.

Tissue Composition and Muscularity of Lamb Legs Fed with Sunflower Seeds and Vitamin E

The purpose of this study was to evaluate the tissue composition and carcass muscularity of 32 legs of Ile de France lambs fed with diets containing sunflower seeds and vitamin E, with mean body weight of 15 kg, lodged in individual pens at 15 kg and slaughtered at 32 kg of body weight. The treatments influenced (P0,05) by the treatments. The interaction of the sunflower and vitamin E was positive for bone total weights and intermuscular fat.

Sensitivity of Input Blocking Capacitor on Output Voltage and Current of a PV Inverter Employing IGBTs

This paper present a MATLAB-SIMULINK model of a single phase 2.5 KVA, 240V RMS controlled PV VSI (Photovoltaic Voltage Source Inverter) inverter using IGBTs (Insulated Gate Bipolar Transistor). The behavior of output voltage, output current, and the total harmonic distortion (THD), with the variation in input dc blocking capacitor (Cdc), for linear and non-linear load has been analyzed. The values of Cdc as suggested by the other authors in their papers are not clearly defined and it poses difficulty in selecting the proper value. As the dc power stored in Cdc, (generally placed parallel with battery) is used as input to the VSI inverter. The simulation results shows the variation in the output voltage and current with different values of Cdc for linear and non-linear load connected at the output side of PV VSI inverter and suggest the selection of suitable value of Cdc.

Urban Management and China's Municipal Pattern

Not only is municipal pattern the institution basement of urban management, but it also determines the forms of the management results. There-s a considerable possibility of bankruptcy for China-s current municipal pattern as it-s an overdraft of land deal in fact. Based on the analysis of China-s current municipal pattern, the passage proposed an assumption of a new pattern verified legitimacy by conceptual as well as econometric models. Conclusion is: the added supernumerary value of investment in public goods was not included in China-s current municipal pattern, but hidden in the rising housing prices; we should set housing tax or municipal tax to optimize the municipal pattern, to correct the behavior of local governments and to ensure the regular development of China-s urbanization.

Simulation of Roughness Shape and Distribution Effects on Rarefied and Compressible Flows at Slip Flow Regime

A numerical simulation of micro Poiseuille flow has performed for rarefied and compressible flow at slip flow regimes. The wall roughness is simulated in two cases with triangular microelements and random micro peaks distributed on wall surfaces to study the effects of roughness shape and distribution on flow field. Two values of Mach and Knudsen numbers have used to investigate the effects of rarefaction as well as compressibility. The numerical results have also checked with available theoretical and experimental relations and good agreements has achieved. High influence of roughness shape can be seen for both compressible and incompressible rarefied flows. In addition it is found that rarefaction has more significant effect on flow field in microchannels with higher relative roughness. It is also found that compressibility has more significant effects on Poiseuille number when relative roughness increases.

Modeling Ambient Carbon Monoxide Pollutant Due to Road Traffic

Rapid urbanization, industrialization and population growth have led to an increase in number of automobiles that cause air pollution. It is estimated that road traffic contributes 60% of air pollution in urban areas. A case by case assessment is required to predict the air quality in urban situations, so as to evolve certain traffic management measures to maintain the air quality levels with in the tolerable limits. Calicut city in the state of Kerala, India has been chosen as the study area. Carbon Monoxide (CO) concentration was monitored at 15 links in Calicut city and air quality performance was evaluated over each link. The CO pollutant concentration values were compared with the National Ambient Air Quality Standards (NAAQS), and the CO values were predicted by using CALINE4 and IITLS and Linear regression models. The study has revealed that linear regression model performs better than the CALINE4 and IITLS models. The possible association between CO pollutant concentration and traffic parameters like traffic flow, type of vehicle, and traffic stream speed was also evaluated.

Tracking Objects in Color Image Sequences: Application to Football Images

In this paper, we present a comparative study between two computer vision systems for objects recognition and tracking, these algorithms describe two different approach based on regions constituted by a set of pixels which parameterized objects in shot sequences. For the image segmentation and objects detection, the FCM technique is used, the overlapping between cluster's distribution is minimized by the use of suitable color space (other that the RGB one). The first technique takes into account a priori probabilities governing the computation of various clusters to track objects. A Parzen kernel method is described and allows identifying the players in each frame, we also show the importance of standard deviation value research of the Gaussian probability density function. Region matching is carried out by an algorithm that operates on the Mahalanobis distance between region descriptors in two subsequent frames and uses singular value decomposition to compute a set of correspondences satisfying both the principle of proximity and the principle of exclusion.

Ontology-based Concept Weighting for Text Documents

Documents clustering become an essential technology with the popularity of the Internet. That also means that fast and high-quality document clustering technique play core topics. Text clustering or shortly clustering is about discovering semantically related groups in an unstructured collection of documents. Clustering has been very popular for a long time because it provides unique ways of digesting and generalizing large amounts of information. One of the issues of clustering is to extract proper feature (concept) of a problem domain. The existing clustering technology mainly focuses on term weight calculation. To achieve more accurate document clustering, more informative features including concept weight are important. Feature Selection is important for clustering process because some of the irrelevant or redundant feature may misguide the clustering results. To counteract this issue, the proposed system presents the concept weight for text clustering system developed based on a k-means algorithm in accordance with the principles of ontology so that the important of words of a cluster can be identified by the weight values. To a certain extent, it has resolved the semantic problem in specific areas.

Alternative Approach toward Waste Treatment: Biodrying for Solid Waste in Malaysia

This paper reviews the objectives, methods and results of previous studies on biodrying of solid waste in several countries. Biodrying of solid waste is a novel technology in developing countries such as in Malaysia where high moisture content in organic waste makes the segregation process for recycling purposes complicated and diminishes the calorific value for the use of fuel source. In addition, the high moisture content also encourages the breeding of vectors and disease-bearing animals. From the laboratory results, the average moisture content of organic waste, paper, plastics and metals are 58.17%, 37.93%, 29.79% and 1.03% respectively for UKM campus. Biodrying of solid waste is a simple method of waste treatment as well as a cost-efficient technology to dry the solid waste. The process depends on temperature monitoring and air flow control along with the natural biodegradable process of organic waste. This review shows that the biodrying of solid waste method has high potential in treatment and recycling of solid waste, be useful for biodrying study and implementation in Malaysia.

Study on Plasma Creation and Propagation in a Pulsed Magnetoplasmadynamic Thruster

The performance and the plasma created by a pulsed magnetoplasmadynamic thruster for small satellite application is studied to understand better the ablation and plasma propagation processes occurring during the short-time discharge. The results can be applied to improve the quality of the thruster in terms of efficiency, and to tune the propulsion system to the needs required by the satellite mission. Therefore, plasma measurements with a high-speed camera and induction probes, and performance measurements of mass bit and impulse bit were conducted. Values for current sheet propagation speed, mean exhaust velocity and thrust efficiency were derived from these experimental data. A maximum in current sheet propagation was found by the high-speed camera measurements for a medium energy input and confirmed by the induction probes. A quasilinear tendency between the mass bit and the energy input, the current action integral respectively, was found, as well as a linear tendency between the created impulse and the discharge energy. The highest mean exhaust velocity and thrust efficiency was found for the highest energy input.

Selection Initial modes for Belief K-modes Method

The belief K-modes method (BKM) approach is a new clustering technique handling uncertainty in the attribute values of objects in both the cluster construction task and the classification one. Like the standard version of this method, the BKM results depend on the chosen initial modes. So, one selection method of initial modes is developed, in this paper, aiming at improving the performances of the BKM approach. Experiments with several sets of real data show that by considered the developed selection initial modes method, the clustering algorithm produces more accurate results.

Three Dimensional Modeling of Mixture Formation and Combustion in a Direct Injection Heavy-Duty Diesel Engine

Due to the stringent legislation for emission of diesel engines and also increasing demand on fuel consumption, the importance of detailed 3D simulation of fuel injection, mixing and combustion have been increased in the recent years. In the present work, FIRE code has been used to study the detailed modeling of spray and mixture formation in a Caterpillar heavy-duty diesel engine. The paper provides an overview of the submodels implemented, which account for liquid spray atomization, droplet secondary break-up, droplet collision, impingement, turbulent dispersion and evaporation. The simulation was performed from intake valve closing (IVC) to exhaust valve opening (EVO). The predicted in-cylinder pressure is validated by comparing with existing experimental data. A good agreement between the predicted and experimental values ensures the accuracy of the numerical predictions collected with the present work. Predictions of engine emissions were also performed and a good quantitative agreement between measured and predicted NOx and soot emission data were obtained with the use of the present Zeldowich mechanism and Hiroyasu model. In addition, the results reported in this paper illustrate that the numerical simulation can be one of the most powerful and beneficial tools for the internal combustion engine design, optimization and performance analysis.

Integrated Cultivation Technique for Microbial Lipid Production by Photosynthetic Microalgae and Locally Oleaginous Yeast

The objective of this research is to study of microbial lipid production by locally photosynthetic microalgae and oleaginous yeast via integrated cultivation technique using CO2 emissions from yeast fermentation. A maximum specific growth rate of Chlorella sp. KKU-S2 of 0.284 (1/d) was obtained under an integrated cultivation and a maximum lipid yield of 1.339g/L was found after cultivation for 5 days, while 0.969g/L of lipid yield was obtained after day 6 of cultivation time by using CO2 from air. A high value of volumetric lipid production rate (QP, 0.223 g/L/d), specific product yield (YP/X, 0.194), volumetric cell mass production rate (QX, 1.153 g/L/d) were found by using ambient air CO2 coupled with CO2 emissions from yeast fermentation. Overall lipid yield of 8.33 g/L was obtained (1.339 g/L of Chlorella sp. KKU-S2 and 7.06g/L of T. maleeae Y30) while low lipid yield of 0.969g/L was found using non-integrated cultivation technique. To our knowledge this is the unique report about the lipid production from locally microalgae Chlorella sp. KKU-S2 and yeast T. maleeae Y30 in an integrated technique to improve the biomass and lipid yield by using CO2 emissions from yeast fermentation.

A Practical Approach for Electricity Load Forecasting

This paper is a continuation of our daily energy peak load forecasting approach using our modified network which is part of the recurrent networks family and is called feed forward and feed back multi context artificial neural network (FFFB-MCANN). The inputs to the network were exogenous variables such as the previous and current change in the weather components, the previous and current status of the day and endogenous variables such as the past change in the loads. Endogenous variable such as the current change in the loads were used on the network output. Experiment shows that using endogenous and exogenous variables as inputs to the FFFBMCANN rather than either exogenous or endogenous variables as inputs to the same network produces better results. Experiments show that using the change in variables such as weather components and the change in the past load as inputs to the FFFB-MCANN rather than the absolute values for the weather components and past load as inputs to the same network has a dramatic impact and produce better accuracy.