Analysis of Combustion, Performance and Emission Characteristics of Turbocharged LHR Extended Expansion DI Diesel Engine

The fundamental aim of extended expansion concept is to achieve higher work done which in turn leads to higher thermal efficiency. This concept is compatible with the application of turbocharger and LHR engine. The Low Heat Rejection engine was developed by coating the piston crown, cylinder head inside with valves and cylinder liner with partially stabilized zirconia coating of 0.5 mm thickness. Extended expansion in diesel engines is termed as Miller cycle in which the expansion ratio is increased by reducing the compression ratio by modifying the inlet cam for late inlet valve closing. The specific fuel consumption reduces to an appreciable level and the thermal efficiency of the extended expansion turbocharged LHR engine is improved. In this work, a thermodynamic model was formulated and developed to simulate the LHR based extended expansion turbocharged direct injection diesel engine. It includes a gas flow model, a heat transfer model, and a two zone combustion model. Gas exchange model is modified by incorporating the Miller cycle, by delaying inlet valve closing timing which had resulted in considerable improvement in thermal efficiency of turbocharged LHR engines. The heat transfer model, calculates the convective and radiative heat transfer between the gas and wall by taking into account of the combustion chamber surface temperature swings. Using the two-zone combustion model, the combustion parameters and the chemical equilibrium compositions were determined. The chemical equilibrium compositions were used to calculate the Nitric oxide formation rate by assuming a modified Zeldovich mechanism. The accuracy of this model is scrutinized against actual test results from the engine. The factors which affect thermal efficiency and exhaust emissions were deduced and their influences were discussed. In the final analysis it is seen that there is an excellent agreement in all of these evaluations.

Design and Simulation of Electromagnetic Flow Meter for Circular Pipe Type

Electromagnetic flow meter by measuring the varying of magnetic flux, which is related to the velocity of conductive flow, can measure the rate of fluids very carefully and precisely. Electromagnetic flow meter operation is based on famous Faraday's second Law. In these equipments, the constant magnetostatic field is produced by electromagnet (winding around the tube) outside of pipe and inducting voltage that is due to conductive liquid flow is measured by electrodes located on two end side of the pipe wall. In this research, we consider to 2-dimensional mathematical model that can be solved by numerical finite difference (FD) solution approach to calculate induction potential between electrodes. The fundamental concept to design the electromagnetic flow meter, exciting winding and simulations are come out by using MATLAB and PDE-Tool software. In the last stage, simulations results will be shown for improvement and accuracy of technical provision.

Removal of Elemental Mercury from Dry Methane Gas with Manganese Oxides

In this study, we sought to investigate the mercury removal efficiency of manganese oxides from natural gas. The fundamental studies on mercury removal with manganese oxides sorbents were carried out in a laboratory scale fixed bed reactor at 30 °C with a mixture of methane (20%) and nitrogen gas laden with 4.8 ppb of elemental mercury. Manganese oxides with varying surface area and crystalline phase were prepared by conventional precipitation method in this study. The effects of surface area, crystallinity and other metal oxides on mercury removal efficiency were investigated. Effect of Ag impregnation on mercury removal efficiency was also investigated. Ag supported on metal oxide such titania and zirconia as reference materials were also used in this study for comparison. The characteristics of mercury removal reaction with manganese oxide was investigated using a temperature programmed desorption (TPD) technique. Manganese oxides showed very high Hg removal activity (about 73-93% Hg removal) for first time use. Surface area of the manganese oxide samples decreased after heat-treatment and resulted in complete loss of Hg removal ability for repeated use after Hg desorption in the case of amorphous MnO2, and 75% loss of the initial Hg removal activity for the crystalline MnO2. Mercury desorption efficiency of crystalline MnO2 was very low (37%) for first time use and high (98%) after second time use. Residual potassium content in MnO2 may have some effect on the thermal stability of the adsorbed Hg species. Desorption of Hg from manganese oxides occurs at much higher temperatures (with a peak at 400 °C) than Ag/TiO2 or Ag/ZrO2. Mercury may be captured on manganese oxides in the form of mercury manganese oxide.

Comparative Analysis of Vibration between Laminated Composite Plates with and without Holes under Compressive Loads

In this study, a vibration analysis was carried out of symmetric angle-ply laminated composite plates with and without square hole when subjected to compressive loads, numerically. A buckling analysis is also performed to determine the buckling load of laminated plates. For each fibre orientation, the compression load is taken equal to 50% of the corresponding buckling load. In the analysis, finite element method (FEM) was applied to perform parametric studies, the effects of degree of orthotropy and stacking sequence upon the fundamental frequencies and buckling loads are discussed. The results show that the presence of a constant compressive load tends to reduce uniformly the natural frequencies for materials which have a low degree of orthotropy. However, this reduction becomes non-uniform for materials with a higher degree of orthotropy.

Improvements in Material Handling: A Case Study of Cement Manufacturing Plant

The globalization of the Indian economy has thrown a great challenge to the Indian industries in respect of productivity, quality, cost, delivery etc. Achieving success• the global market has required fundamental shift in the way business is conducted and has dramatically affected virtually every aspect of process industry. The internal manufacturing process and supporting infrastructure should be such that it can compete successfully in global markets with better flexibility and delivery. The paper deals with a case study of a reputed process industry, some changes in the process has been suggested, which leads to reduction in labor cost and production cost.

A Post Keynesian Environmental Macroeconomic Model for Agricultural Water Sustainability under Climate Change in the Murray-Darling Basin, Australia

Climate change has profound consequences for the agriculture of south-eastern Australia and its climate-induced water shortage in the Murray-Darling Basin. Post Keynesian Economics (PKE) macro-dynamics, along with Kaleckian investment and growth theory, are used to develop an ecological-economic system dynamics model of this complex nonlinear river basin system. The Murray- Darling Basin Simulation Model (MDB-SM) uses the principles of PKE to incorporate the fundamental uncertainty of economic behaviors of farmers regarding the investments they make and the climate change they face, particularly as regards water ecosystem services. MDB-SM provides a framework for macroeconomic policies, especially for long-term fiscal policy and for policy directed at the sustainability of agricultural water, as measured by socio-economic well-being considerations, which include sustainable consumption and investment in the river basin. The model can also reproduce other ecological and economic aspects and, for certain parameters and initial values, exhibit endogenous business cycles and ecological sustainability with realistic characteristics. Most importantly, MDBSM provides a platform for the analysis of alternative economic policy scenarios. These results reveal the importance of understanding water ecosystem adaptation under climate change by integrating a PKE macroeconomic analytical framework with the system dynamics modelling approach. Once parameterised and supplied with historical initial values, MDB-SM should prove to be a practical tool to provide alternative long-term policy simulations of agricultural water and socio-economic well-being.

Simple Agents Benefit Only from Simple Brains

In order to answer the general question: “What does a simple agent with a limited life-time require for constructing a useful representation of the environment?" we propose a robot platform including the simplest probabilistic sensory and motor layers. Then we use the platform as a test-bed for evaluation of the navigational capabilities of the robot with different “brains". We claim that a protocognitive behavior is not a consequence of highly sophisticated sensory–motor organs but instead emerges through an increment of the internal complexity and reutilization of the minimal sensory information. We show that the most fundamental robot element, the short-time memory, is essential in obstacle avoidance. However, in the simplest conditions of no obstacles the straightforward memoryless robot is usually superior. We also demonstrate how a low level action planning, involving essentially nonlinear dynamics, provides a considerable gain to the robot performance dynamically changing the robot strategy. Still, however, for very short life time the brainless robot is superior. Accordingly we suggest that small organisms (or agents) with short life-time does not require complex brains and even can benefit from simple brain-like (reflex) structures. To some extend this may mean that controlling blocks of modern robots are too complicated comparative to their life-time and mechanical abilities.

Transmission Loss Allocation via Loss Function Decomposition and Current Projection Concept

One of the major problems in liberalized power markets is loss allocation. In this paper, a different method for allocating transmission losses to pool market participants is proposed. The proposed method is fundamentally based on decomposition of loss function and current projection concept. The method has been implemented and tested on several networks and one sample summarized in the paper. The results show that the method is comprehensive and fair to allocating the energy losses of a power market to its participants.

Beating Phenomenon of Multi-Harmonics Defect Frequencies in a Rolling Element Bearing: Case Study from Water Pumping Station

Rolling element bearings are widely used in industry, especially where high load capacity is required. The diagnosis of their conditions is essential matter for downtime reduction and saving cost of maintenance. Therefore, an intensive analysis of frequency spectrum of their faults must be carried out in order to determine the main reason of the fault. This paper focus on a beating phenomena observed in the waveform (time domain) of a cylindrical rolling element bearing. The beating frequencies were not related to any sources nearby the machine nor any other malfunctions (unbalance, misalignment ...etc). More investigation on the spike energy and the frequency spectrum indicated a problem with races of the bearing. Multi-harmonics of the fundamental defects frequencies were observed. Two of them were close to each other in magnitude those were the source of the beating phenomena.

Investigation and Congestion Management to Solvethe Over-Load Problem of Shiraz Substation in FREC

In this paper, the transformers over-load problem of Shiraz substation in Fars Regional Electric Company (FREC) is investigated for a period of three years plan. So the suggestions for using phase shifting transformer (PST) and unified power flow controller (UPFC) in order to solve this problem are examined in details and finally, some economical and practical designs will be given in order to solve the related problems. Practical consideration and using the basic and fundamental concept of powers in transmission lines in order to find the economical design are the main advantages of this research. The simulation results of the integrated overall system with different designs compare them base on economical and practical aspects to solve the over-load and loss-reduction.

Electricity Power Planning: the Role of Wind Energy

Combining energy efficiency with renewable energy sources constitutes a key strategy for a sustainable future. The wind power sector stands out as a fundamental element for the achievement of the European renewable objectives and Portugal is no exception to the increase of the wind energy for the electricity generation. This work proposes an optimization model for the long range electricity power planning in a system similar to the Portuguese one, where the expected impacts of the increasing installed wind power on the operating performance of thermal power plants are taken into account. The main results indicate that the increasing penetration of wind power in the electricity system will have significant effects on the combined cycle gas power plants operation and on the theoretically expected cost reduction and environmental gains. This research demonstrated the need to address the impact that energy sources with variable output may have, not only on the short-term operational planning, but especially on the medium to long range planning activities, in order to meet the strategic objectives for the energy sector.

Marketing Segmentation of Students Willing to Study Abroad based on Cluster Analysis

Market segmentation is one of the most fundamental strategic marketing concepts. The better the segment which is chosen for targeting by a particular organisation, the more successful the organisation is assumed to be in the marketplace. Also higher education institutions have to improve their marketing tools for attracting foreign students, particularly when demanding tuition fees. This contribution aims at demonstrating the proper usage of the cluster analysis for segmentation (represented by students' willingness to study abroad) and also, based on large international survey, offers some practical marketing implications.

Issues in Deploying Smart Antennas in Mobile Radio Networks

With the exponentially increasing demand for wireless communications the capacity of current cellular systems will soon become incapable of handling the growing traffic. Since radio frequencies are diminishing natural resources, there seems to be a fundamental barrier to further capacity increase. The solution can be found in smart antenna systems. Smart or adaptive antenna arrays consist of an array of antenna elements with signal processing capability, that optimize the radiation and reception of a desired signal, dynamically. Smart antennas can place nulls in the direction of interferers via adaptive updating of weights linked to each antenna element. They thus cancel out most of the co-channel interference resulting in better quality of reception and lower dropped calls. Smart antennas can also track the user within a cell via direction of arrival algorithms. This implies that they are more advantageous than other antenna systems. This paper focuses on few issues about the smart antennas in mobile radio networks.

Species Spreading due to Environmental Hostility, Dispersal Adaptation and Allee Effects

A phenomenological model for species spreading which incorporates the Allee effect, a species- maximum attainable growth rate, collective dispersal rate and dispersal adaptability is presented. This builds on a well-established reaction-diffusion model for spatial spreading of invading organisms. The model is phrased in terms of the “hostility" (which quantifies the Allee threshold in relation to environmental sustainability) and dispersal adaptability (which measures how a species is able to adapt its migratory response to environmental conditions). The species- invading/retreating speed and the sharpness of the invading boundary are explicitly characterised in terms of the fundamental parameters, and analysed in detail.

On Stability of Stiffened Cylindrical Shells with Varying Material Properties

The static stability analysis of stiffened functionally graded cylindrical shells by isotropic rings and stringers subjected to axial compression is presented in this paper. The Young's modulus of the shell is taken to be function of the thickness coordinate. The fundamental relations, the equilibrium and stability equations are derived using the Sander's assumption. Resulting equations are employed to obtain the closed-form solution for the critical axial loads. The effects of material properties, geometric size and different material coefficient on the critical axial loads are examined. The analytical results are compared and validated using the finite element model.

Depth Controls of an Autonomous Underwater Vehicle by Neurocontrollers for Enhanced Situational Awareness

This paper focuses on a critical component of the situational awareness (SA), the neural control of autonomous constant depth flight of an autonomous underwater vehicle (AUV). Autonomous constant depth flight is a challenging but important task for AUVs to achieve high level of autonomy under adverse conditions. The fundamental requirement for constant depth flight is the knowledge of the depth, and a properly designed controller to govern the process. The AUV, named VORAM, is used as a model for the verification of the proposed hybrid control algorithm. Three neural network controllers, named NARMA-L2 controllers, are designed for fast and stable diving maneuvers of chosen AUV model. This hybrid control strategy for chosen AUV model has been verified by simulation of diving maneuvers using software package Simulink and demonstrated good performance for fast SA in real-time searchand- rescue operations.

Multidimensional Performance Management

In order to maximize efficiency of an information management platform and to assist in decision making, the collection, storage and analysis of performance-relevant data has become of fundamental importance. This paper addresses the merits and drawbacks provided by the OLAP paradigm for efficiently navigating large volumes of performance measurement data hierarchically. The system managers or database administrators navigate through adequately (re)structured measurement data aiming to detect performance bottlenecks, identify causes for performance problems or assessing the impact of configuration changes on the system and its representative metrics. Of particular importance is finding the root cause of an imminent problem, threatening availability and performance of an information system. Leveraging OLAP techniques, in contrast to traditional static reporting, this is supposed to be accomplished within moderate amount of time and little processing complexity. It is shown how OLAP techniques can help improve understandability and manageability of measurement data and, hence, improve the whole Performance Analysis process.

Minimization of Switching Losses in Cascaded Multilevel Inverters Using Efficient Sequential Switching Hybrid-Modulation Techniques

This paper presents two different sequential switching hybrid-modulation strategies and implemented for cascaded multilevel inverters. Hybrid modulation strategies represent the combinations of Fundamental-frequency pulse width modulation (FFPWM) and Multilevel sinusoidal-modulation (MSPWM) strategies, and are designed for performance of the well-known Alternative Phase opposition disposition (APOD), Phase shifted carrier (PSC). The main characteristics of these modulations are the reduction of switching losses with good harmonic performance, balanced power loss dissipation among the devices with in a cell, and among the series-connected cells. The feasibility of these modulations is verified through spectral analysis, power loss analysis and simulation.

A New Fuzzy DSS/ES for Stock Portfolio Selection using Technical and Fundamental Approaches in Parallel

A Decision Support System/Expert System for stock portfolio selection presented where at first step, both technical and fundamental data used to estimate technical and fundamental return and risk (1st phase); Then, the estimated values are aggregated with the investor preferences (2nd phase) to produce convenient stock portfolio. In the 1st phase, there are two expert systems, each of which is responsible for technical or fundamental estimation. In the technical expert system, for each stock, twenty seven candidates are identified and with using rough sets-based clustering method (RC) the effective variables have been selected. Next, for each stock two fuzzy rulebases are developed with fuzzy C-Mean method and Takai-Sugeno- Kang (TSK) approach; one for return estimation and the other for risk. Thereafter, the parameters of the rule-bases are tuned with backpropagation method. In parallel, for fundamental expert systems, fuzzy rule-bases have been identified in the form of “IF-THEN" rules through brainstorming with the stock market experts and the input data have been derived from financial statements; as a result two fuzzy rule-bases have been generated for all the stocks, one for return and the other for risk. In the 2nd phase, user preferences represented by four criteria and are obtained by questionnaire. Using an expert system, four estimated values of return and risk have been aggregated with the respective values of user preference. At last, a fuzzy rule base having four rules, treats these values and produce a ranking score for each stock which will lead to a satisfactory portfolio for the user. The stocks of six manufacturing companies and the period of 2003-2006 selected for data gathering.

Estimation of Attenuation and Phase Delay in Driving Voltage Waveform of a Digital-Noiseless, Ultra-High-Speed Image Sensor

Since 2004, we have been developing an in-situ storage image sensor (ISIS) that captures more than 100 consecutive images at a frame rate of 10 Mfps with ultra-high sensitivity as well as the video camera for use with this ISIS. Currently, basic research is continuing in an attempt to increase the frame rate up to 100 Mfps and above. In order to suppress electro-magnetic noise at such high frequency, a digital-noiseless imaging transfer scheme has been developed utilizing solely sinusoidal driving voltages. This paper presents highly efficient-yet-accurate expressions to estimate attenuation as well as phase delay of driving voltages through RC networks of an ultra-high-speed image sensor. Elmore metric for a fundamental RC chain is employed as the first-order approximation. By application of dimensional analysis to SPICE data, we found a simple expression that significantly improves the accuracy of the approximation. Similarly, another simple closed-form model to estimate phase delay through fundamental RC networks is also obtained. Estimation error of both expressions is much less than previous works, only less 2% for most of the cases . The framework of this analysis can be extended to address similar issues of other VLSI structures.