Experimental Inspection of Damage and Performance Evaluation after Repair and Strengthening of Jiamusi Highway Prestressed Concrete Bridge in China

The main objectives of this study are to inspect and identify any damage of jaimusi highway prestressed concrete bridge after repair and strengthening of damaged structural members and to evaluate the performance of the bridge structural members by adopting static load test. Inspection program after repair and strengthening includes identifying and evaluating the structural members of bridge such as T-shape cantilever structure, hanging beams, corbels, external tendons, anchor beams, sticking steel plate, and piers. The results of inspection show that the overall state of the bridge structural member after repair and strengthening is good. The results of rebound test of concrete strength show that the average strength of concrete is 46.31Mpa. Whereas, the average value of concrete strength of anchor beam is 49.82Mpa. According to the results of static load test, the experimental values are less than theoretical values of internal forces, deflection, and strain, indicating that the stiffness of the experimental structure, overall deformation and integrity satisfy the designed standard and the working performance is good, and the undertaking capacity has a certain surplus. There is not visible change in the length and width of cracks and there are not new cracks under experimental load.

Elastic Strain-Concentration Factor of Cylindrical Bars with Circumferential Flat-Bottom Groove under Static Tension

Using finite element method (FEM), the elastic new strain-concentration factor (SNCF) of cylindrical bars with circumferential flat-bottom groove is studied. This new SNCF has been defined under triaxial stress state. The employed specimens have constant groove depth with net section and gross diameters of 10.0 and 16.7 mm, respectively. The length of flatness ao has been varied form 0.0 ~12.5 mm to study the elastic SNCF of this type of geometrical irregularities. The results that the elastic new SNCF rapidly drops from its elastic value of the groove with ao = 0.0, i.e. circumferential U-notch, and reaches minimum value at ao = 2 mm. After that the elastic new SNCF becomes nearly constant with increasing flatness length (ao). The value of tensile load at yielding at the groove root increases with increasing ao. The current results show that severity of the notch decreases with increasing flatness length ao.

Implementation of Second Order Current- Mode Quadrature Sinusoidal Oscillator with Current Controllability

The realization of current-mode quadrature oscillators using current controlled current conveyor transconductance amplifiers (CCCCTAs) and grounded capacitors is presented. The proposed oscillators can provide 2 sinusoidal output currents with 90º phase difference. It is enabled non-interactive dual-current control for both the condition of oscillation and the frequency of oscillation. High output impedances of the configurations enable the circuit to be cascaded without additional current buffers. The use of only grounded capacitors is ideal for integration. The circuit performances are depicted through PSpice simulations, they show good agreement to theoretical anticipation.

Privacy Issues in Pervasive Healthcare Monitoring System: A Review

Privacy issues commonly discussed among researchers, practitioners, and end-users in pervasive healthcare. Pervasive healthcare systems are applications that can support patient-s need anytime and anywhere. However, pervasive healthcare raises privacy concerns since it can lead to situations where patients may not be aware that their private information is being shared and becomes vulnerable to threat. We have systematically analyzed the privacy issues and present a summary in tabular form to show the relationship among the issues. The six issues identified are medical information misuse, prescription leakage, medical information eavesdropping, social implications for the patient, patient difficulties in managing privacy settings, and lack of support in designing privacy-sensitive applications. We narrow down the issues and chose to focus on the issue of 'lack of support in designing privacysensitive applications' by proposing a privacy-sensitive architecture specifically designed for pervasive healthcare monitoring systems.

Robust Minutiae Watermarking in Wavelet Domain for Fingerprint Security

In this manuscript, a wavelet-based blind watermarking scheme has been proposed as a means to provide security to authenticity of a fingerprint. The information used for identification or verification of a fingerprint mainly lies in its minutiae. By robust watermarking of the minutiae in the fingerprint image itself, the useful information can be extracted accurately even if the fingerprint is severely degraded. The minutiae are converted in a binary watermark and embedding these watermarks in the detail regions increases the robustness of watermarking, at little to no additional impact on image quality. It has been experimentally shown that when the minutiae is embedded into wavelet detail coefficients of a fingerprint image in spread spectrum fashion using a pseudorandom sequence, the robustness is observed to have a proportional response while perceptual invisibility has an inversely proportional response to amplification factor “K". The DWT-based technique has been found to be very robust against noises, geometrical distortions filtering and JPEG compression attacks and is also found to give remarkably better performance than DCT-based technique in terms of correlation coefficient and number of erroneous minutiae.

Bio-inspired Audio Content-Based Retrieval Framework (B-ACRF)

Content-based music retrieval generally involves analyzing, searching and retrieving music based on low or high level features of a song which normally used to represent artists, songs or music genre. Identifying them would normally involve feature extraction and classification tasks. Theoretically the greater features analyzed, the better the classification accuracy can be achieved but with longer execution time. Technique to select significant features is important as it will reduce dimensions of feature used in classification and contributes to the accuracy. Artificial Immune System (AIS) approach will be investigated and applied in the classification task. Bio-inspired audio content-based retrieval framework (B-ACRF) is proposed at the end of this paper where it embraces issues that need further consideration in music retrieval performances.

Enhancement of Low Contrast Satellite Images using Discrete Cosine Transform and Singular Value Decomposition

In this paper, a novel contrast enhancement technique for contrast enhancement of a low-contrast satellite image has been proposed based on the singular value decomposition (SVD) and discrete cosine transform (DCT). The singular value matrix represents the intensity information of the given image and any change on the singular values change the intensity of the input image. The proposed technique converts the image into the SVD-DCT domain and after normalizing the singular value matrix; the enhanced image is reconstructed by using inverse DCT. The visual and quantitative results suggest that the proposed SVD-DCT method clearly shows the increased efficiency and flexibility of the proposed method over the exiting methods such as Linear Contrast Stretching technique, GHE technique, DWT-SVD technique, DWT technique, Decorrelation Stretching technique, Gamma Correction method based techniques.

Hybrid Algorithm for Hammerstein System Identification Using Genetic Algorithm and Particle Swarm Optimization

This paper presents a method of model selection and identification of Hammerstein systems by hybridization of the genetic algorithm (GA) and particle swarm optimization (PSO). An unknown nonlinear static part to be estimated is approximately represented by an automatic choosing function (ACF) model. The weighting parameters of the ACF and the system parameters of the linear dynamic part are estimated by the linear least-squares method. On the other hand, the adjusting parameters of the ACF model structure are properly selected by the hybrid algorithm of the GA and PSO, where the Akaike information criterion is utilized as the evaluation value function. Simulation results are shown to demonstrate the effectiveness of the proposed hybrid algorithm.

Modeling of Pulping of Sugar Maple Using Advanced Neural Network Learning

This paper reports work done to improve the modeling of complex processes when only small experimental data sets are available. Neural networks are used to capture the nonlinear underlying phenomena contained in the data set and to partly eliminate the burden of having to specify completely the structure of the model. Two different types of neural networks were used for the application of Pulping of Sugar Maple problem. A three layer feed forward neural networks, using the Preconditioned Conjugate Gradient (PCG) methods were used in this investigation. Preconditioning is a method to improve convergence by lowering the condition number and increasing the eigenvalues clustering. The idea is to solve the modified problem where M is a positive-definite preconditioner that is closely related to A. We mainly focused on Preconditioned Conjugate Gradient- based training methods which originated from optimization theory, namely Preconditioned Conjugate Gradient with Fletcher-Reeves Update (PCGF), Preconditioned Conjugate Gradient with Polak-Ribiere Update (PCGP) and Preconditioned Conjugate Gradient with Powell-Beale Restarts (PCGB). The behavior of the PCG methods in the simulations proved to be robust against phenomenon such as oscillations due to large step size.

Between Policy Options and Technology Applications: Measuring the Sustainable Impacts on Distance Learning

This paper examines the interplay of policy options and cost-effective technology in providing sustainable distance education. A case study has been conducted among the learners and teachers. The emergence of learning technologies through CD, internet, and mobile is increasingly adopted by distance institutes for quick delivery and cost-effective factors. Their sustainability is conditioned by the structure of learners and well as the teaching community. The structure of learners in terms of rural and urban background revealed similarity in adoption and utilization of mobile learning. In other words, the technology transcended the rural-urban dichotomy. The teaching community was divided into two groups on policy issues. This study revealed both cost-effective as well as sustainability impacts on different learners groups divided by rural and urban location.

Development of Circulating Support Environment of Multilingual Medical Communication using Parallel Texts for Foreign Patients

The need for multilingual communication in Japan has increased due to an increase in the number of foreigners in the country. When people communicate in their nonnative language, the differences in language prevent mutual understanding among the communicating individuals. In the medical field, communication between the hospital staff and patients is a serious problem. Currently, medical translators accompany patients to medical care facilities, and the demand for medical translators is increasing. However, medical translators cannot necessarily provide support, especially in cases in which round-the-clock support is required or in case of emergencies. The medical field has high expectations from information technology. Hence, a system that supports accurate multilingual communication is required. Despite recent advances in machine translation technology, it is very difficult to obtain highly accurate translations. We have developed a support system called M3 for multilingual medical reception. M3 provides support functions that aid foreign patients in the following respects: conversation, questionnaires, reception procedures, and hospital navigation; it also has a Q&A function. Users can operate M3 using a touch screen and receive text-based support. In addition, M3 uses accurate translation tools called parallel texts to facilitate reliable communication through conversations between the hospital staff and the patients. However, if there is no parallel text that expresses what users want to communicate, the users cannot communicate. In this study, we have developed a circulating support environment for multilingual medical communication using parallel texts. The proposed environment can circulate necessary parallel texts through the following procedure: (1) a user provides feedback about the necessary parallel texts, following which (2) these parallel texts are created and evaluated.

Delay Analysis of Sampled-Data Systems in Hard RTOS

In this paper, we have presented the effect of varying time-delays on performance and stability in the single-channel multirate sampled-data system in hard real-time (RT-Linux) environment. The sampling task require response time that might exceed the capacity of RT-Linux. So a straight implementation with RT-Linux is not feasible, because of the latency of the systems and hence, sampling period should be less to handle this task. The best sampling rate is chosen for the sampled-data system, which is the slowest rate meets all performance requirements. RT-Linux is consistent with its specifications and the resolution of the real-time is considered 0.01 seconds to achieve an efficient result. The test results of our laboratory experiment shows that the multi-rate control technique in hard real-time operating system (RTOS) can improve the stability problem caused by the random access delays and asynchronization.

Multi-Case Multi-Objective Simulated Annealing (MC-MOSA): New Approach to Adapt Simulated Annealing to Multi-objective Optimization

In this paper a new approach is proposed for the adaptation of the simulated annealing search in the field of the Multi-Objective Optimization (MOO). This new approach is called Multi-Case Multi-Objective Simulated Annealing (MC-MOSA). It uses some basics of a well-known recent Multi-Objective Simulated Annealing proposed by Ulungu et al., which is referred in the literature as U-MOSA. However, some drawbacks of this algorithm have been found, and are substituted by other ones, especially in the acceptance decision criterion. The MC-MOSA has shown better performance than the U-MOSA in the numerical experiments. This performance is further improved by some other subvariants of the MC-MOSA, such as Fast-annealing MC-MOSA, Re-annealing MCMOSA and the Two-Stage annealing MC-MOSA.

High-Speed Train Planning in France, Lessons from Mediterranean TGV-Line

To fight against the economic crisis, French Government, like many others in Europe, has decided to give a boost to high-speed line projects. This paper explores the implementation and decision-making process in TGV projects, their evolutions, especially since the Mediterranean TGV-line. This project was probably the most controversial, but paradoxically represents today a huge success for all the actors involved. What kind of lessons we can learn from this experience? How to evaluate the impact of this project on TGV-line planning? How can we characterize this implementation and decision-making process regards to the sustainability challenges? The construction of Mediterranean TGV-line was the occasion to make several innovations: to introduce more dialog into the decisionmaking process, to take into account the environment, to introduce a new project management and technological innovations. That-s why this project appears today as an example in terms of integration of sustainable development. In this paper we examine the different kinds of innovations developed in this project, by using concepts from sociology of innovation to understand how these solutions emerged in a controversial situation. Then we analyze the lessons which were drawn from this decision-making process (in the immediacy and a posteriori) and the way in which procedures evolved: creation of new tools and devices (public consultation, project management...). Finally we try to highlight the impact of this evolution on TGV projects governance. In particular, new methods of implementation and financing involve a reconfiguration of the system of actors. The aim of this paper is to define the impact of this reconfiguration on negotiations between stakeholders.

The Analysis of Two-Phase Jet in Pneumatic Powder Injection into Liquid Alloys

The results of the two-phase gas-solid jet in pneumatic powder injection process analysis were presented in the paper. The researches were conducted on model set-up with high speed camera jet movement recording. Then the recorded material was analyzed to estimate main particles movement parameters. The values obtained from this direct measurement were compared to those calculated with the use of the well-known formulas for the two-phase flows (pneumatic conveying). Moreover, they were compared to experimental results previously achieved by authors. The analysis led to conclusions which to some extent changed the assumptions used even by authors, regarding the two-phase jet in pneumatic powder injection process. Additionally, the visual analysis of the recorded clips supplied data to make a more complete evaluation of the jet behavior in the lance outlet than before.

Comanche – A Compiler-Driven I/O Management System

Most scientific programs have large input and output data sets that require out-of-core programming or use virtual memory management (VMM). Out-of-core programming is very error-prone and tedious; as a result, it is generally avoided. However, in many instance, VMM is not an effective approach because it often results in substantial performance reduction. In contrast, compiler driven I/O management will allow a program-s data sets to be retrieved in parts, called blocks or tiles. Comanche (COmpiler MANaged caCHE) is a compiler combined with a user level runtime system that can be used to replace standard VMM for out-of-core programs. We describe Comanche and demonstrate on a number of representative problems that it substantially out-performs VMM. Significantly our system does not require any special services from the operating system and does not require modification of the operating system kernel.

Influence of Atmospheric Physical Effects on Static Behavior of Building Plate Components Made of Fiber-Cement-Based Materials

The paper presents the brief information on particular results of experimental study focused to the problems of behavior of structural plated components made of fiber-cement-based materials and used in building constructions, exposed to atmospheric physical effects given by the weather changes in the summer period. Weather changes represented namely by temperature and rain cause also the changes of the temperature and moisture of the investigated structural components. This can affect their static behavior that means stresses and deformations, which have been monitored as the main outputs of tests performed. Experimental verification is based on the simulation of the influence of temperature and rain using the defined procedure of warming and water sprinkling with respect to the corresponding weather conditions during summer period in the South Moravian region at the Czech Republic, for which the application of these structural components is mainly planned. Two types of components have been tested: (i) glass-fiber-concrete panels used for building façades and (ii) fiber-cement slabs used mainly for claddings, but also as a part of floor structures or lost shuttering, and so on.

Analysis of Gamma-Ray Spectra Using Levenberg-Marquardt Method

Levenberg-Marquardt method (LM) was proposed to be applied as a non-linear least-square fitting in the analysis of a natural gamma-ray spectrum that was taken by the Hp (Ge) detector. The Gaussian function that composed of three components, main Gaussian, a step background function and tailing function in the lowenergy side, has been suggested to describe each of the y-ray lines mathematically in the spectrum. The whole spectrum has been analyzed by determining the energy and relative intensity for the strong y-ray lines.

Optimization of Reaction Rate Parameters in Modeling of Heavy Paraffins Dehydrogenation

In the present study, a procedure was developed to determine the optimum reaction rate constants in generalized Arrhenius form and optimized through the Nelder-Mead method. For this purpose, a comprehensive mathematical model of a fixed bed reactor for dehydrogenation of heavy paraffins over Pt–Sn/Al2O3 catalyst was developed. Utilizing appropriate kinetic rate expressions for the main dehydrogenation reaction as well as side reactions and catalyst deactivation, a detailed model for the radial flow reactor was obtained. The reactor model composed of a set of partial differential equations (PDE), ordinary differential equations (ODE) as well as algebraic equations all of which were solved numerically to determine variations in components- concentrations in term of mole percents as a function of time and reactor radius. It was demonstrated that most significant variations observed at the entrance of the bed and the initial olefin production obtained was rather high. The aforementioned method utilized a direct-search optimization algorithm along with the numerical solution of the governing differential equations. The usefulness and validity of the method was demonstrated by comparing the predicted values of the kinetic constants using the proposed method with a series of experimental values reported in the literature for different systems.

Numerical Calculation of Coils Filled With Bianisotropic Media

Recently, bianisotropic media again received increasing importance in electromagnetic theory because of advances in material science which enable the manufacturing of complex bianisotropic materials. By using Maxwell's equations and corresponding boundary conditions, the electromagnetic field distribution in bianisotropic solenoid coils is determined and the influence of the bianisotropic behaviour of coil to the impedance and Q-factor is considered. Bianisotropic media are the largest class of linear media which is able to describe the macroscopic material properties of artificial dielectrics, artificial magnetics, artificial chiral materials, left-handed materials, metamaterials, and other composite materials. Several special cases of coils, filled with complex substance, have been analyzed. Results obtained by using the analytical approach are compared with values calculated by numerical methods, especially by our new hybrid EEM/BEM method and FEM.