Mechanical and Thermal Properties of Hybrid Blends of LLDPE/Starch/PVA

Polybag and mulch film in agricultural field are used plastics which caused environmental problems after transplantation and planting processes due to the discarded wastes. Thus a degradable polybag was designed in this study to replace non degradable polybag with natural biodegradable resin that is widely available, namely sago starch (SS) and polyvinyl alcohol (PVA). Hybrid blend consists of SS, PVA and linear low density polyethylene (LLDPE) was compounded at different ratios. The thermal and mechanical properties of the blends were investigated. Hybrid films underwent landfill degradation tests for up to 2 months. The films showed gelation and melting transition existed for all three systems with significant melting peaks by LLDPE and PVA. All hybrid blends loses its LLDPE semi crystalline characteristics as PVA and SS systems had disrupted crystallinity and enhanced the amorphosity of the hybrid system. Generally, blending SS with PVA improves the mechanical properties of the SS based materials. Tensile strength of each film was also decreased with the increase of SS contents while its modulus had increased with SS content.

Roughness and Hardness of 60/40 Cu-Zn Alloy

The functional performance of machined components, often, depends on surface topography, hardness, nature of stress and strain induced on the surface, etc. Invariably, surfaces of metallic components obtained by turning, milling, etc., consist of irregularities such as machining marks are responsible for the above. Surface finishing/coating processes used to produce improved surface quality/textures are classified as chip-removal and chip-less processes. Burnishing is chip-less cold working process carried out to improve surface finish, hardness and resistance to fatigue and corrosion; not obtainable by other surface coating and surface treatment processes. It is a very simple, but effective method which improves surface characteristics and is reported to introduce compressive stresses. Of late, considerable attention is paid to post-machining, finishing operations, such as burnishing. During burnishing the micro-irregularities start to deform plastically, initially the crests are gradually flattened and zones of reduced deformation are formed. When all the crests are deformed, the valleys between the micro-irregularities start moving in the direction of the newly formed surface. The grain structure is then condensed, producing a smoother and harder surface with superior load-carrying and wear-resistant capabilities. Burnishing can be performed on a lathe with a highly polished ball or roller type tool which is traversed under force over a rotating/stationary work piece. Often, several passes are used to obtain the work piece surface with the desired finish and hardness. This paper presents the findings of an experimental investigation on the effect of ball burnishing parameters such as, burnishing speed, feed, force and number of passes; on surface roughness (Ra) and micro-hardness (Hv) of a 60/40 copper/zinc alloy, using a 2-level fractional factorial design of experiments (DoE). Mathematical models were developed to predict surface roughness and hardness generated by burnishing in terms of the above process parameters. A ball-type tool, designed and constructed from a high chrome steel material (HRC=63 and Ra=0.012 µm), was used for burnishing of fine-turned cylindrical bars (0.68-0.78µm and 145Hv). They are given by,   Ra= 0.305-0.005X1 - 0.0175X2 + 0.0525X4 + 0.0125X1X4 -0.02X2X4 - 0.0375X3X4   Hv=160.625 -2.37 5X1 + 5.125X2 + 1.875X3 + 4.375X4 - 1.625X1X4 + 4.375X2X4 - 2.375X3X4   High surface microhardness (175HV) was obtained at 400rpm, 2passes, 0.05mm/rev and 15kgf., and high surface finish (0.20µm) was achieved at 30kgf, 0.1mm/rev, 112rpm and single pass. In other words, surface finish improved by 350% and microhardness improved by 21% compared to as machined conditions.

Comparison of Material Constitutive Models Used in FEA of Low Volume Roads

Appropriate and progressive tool for analyzing behavior of low volume roads are probabilistic models used in reliability analyses. The necessary part of the probabilistic model is the deterministic model of structural behavior. The FE model of low volume roads is created in the ANSYS software. It is able to determine the state of stress and deformation in any point of the structure and thus generate data required for the reliability analysis. The paper compares two material constitutive models used for modeling of unbound non-homogenous materials used in low volume roads. The first model is linear elastic model according to Hook theory (H model), the second one is nonlinear elastic-plastic Drucker-Prager model (D-P model).

Bio-Surfactant Production and Its Application in Microbial EOR

There are various sources of energies available worldwide and among them, crude oil plays a vital role. Oil recovery is achieved using conventional primary and secondary recovery methods. In-order to recover the remaining residual oil, technologies like Enhanced Oil Recovery (EOR) are utilized which is also known as tertiary recovery. Among EOR, Microbial enhanced oil recovery (MEOR) is a technique which enables the improvement of oil recovery by injection of bio-surfactant produced by microorganisms. Bio-surfactant can retrieve unrecoverable oil from the cap rock which is held by high capillary force. Bio-surfactant is a surface active agent which can reduce the interfacial tension and reduce viscosity of oil and thereby oil can be recovered to the surface as the mobility of the oil is increased. Research in this area has shown promising results besides the method is echo-friendly and cost effective compared with other EOR techniques. In our research, on laboratory scale we produced bio-surfactant using the strain Pseudomonas putida (MTCC 2467) and injected into designed simple sand packed column which resembles actual petroleum reservoir. The experiment was conducted in order to determine the efficiency of produced bio-surfactant in oil recovery. The column was made of plastic material with 10 cm in length. The diameter was 2.5 cm. The column was packed with fine sand material. Sand was saturated with brine initially followed by oil saturation. Water flooding followed by bio-surfactant injection was done to determine the amount of oil recovered. Further, the injection of bio-surfactant volume was varied and checked how effectively oil recovery can be achieved. A comparative study was also done by injecting Triton X 100 which is one of the chemical surfactant. Since, bio-surfactant reduced surface and interfacial tension oil can be easily recovered from the porous sand packed column.

Mechanical Equation of State in an Al-Li Alloy

Existence of plastic equation of state has been investigated by performing a series of load relaxation tests at various temperatures using an Al-Li alloy. A plastic equation of state is first developed from a simple kinetics consideration for a mechanical activation process of a leading dislocation piled up against grain boundaries. A series of load relaxation test has been conducted at temperatures ranging from 200 to 530oC to obtain the stress-strain rate curves. A plastic equation of state has been derived from a simple consideration of dislocation kinetics and confirmed by experimental results.

Effect of Zr Addition on Mechanical Properties of Cr-Mo Plastic Mold Steels

We investigated the effects of the additions of Zr and other alloying elements on the mechanical properties and microstructure in Cr-Mo plastic mold steels. The addition of alloying elements changed the microstructure of the normalized samples from the upper bainite to lower bainite due to the increased hardenability. The tempering temperature influenced the strength and hardness values, especially the phenomenon of 350oC embrittlement was observed. The alloy additions of Cr, Mo, and V improved the resistance to the temper embrittlement. The addition of Zr improved the tensile strength and yield strength, but the impact energy was sharply decreased. It may be caused by the formation of Zr-MnS inclusion and rectangular-shaped Zr inclusion due to the Zr addition.

Effect of Support Distance on Damage of Drilled Thin CFRP Laminates

Severe damages may occur during the drilling of carbon fiber reinforced plastics (CFRP). In practice, this damage is limited by adding a backup support to the drilled parts. For some aeronautical parts with curvatures, backing up parts is a demanding process. In order to simplify the operation, this research studies the effect of using a configurable setup to support parts on the resulting quality of drilled holes. The test coupons referenced in this study are twenty four-plies unidirectional laminates made of carbon fibers and epoxy resin. Different signals were measured during the drilling process for these laminates, including the thrust force, the displacement and the acceleration. The processing of these signals demonstrated that the damage is due to the combination of two main factors: the spring-back of the thin part and the thrust force. The results found were confirmed for different feeds and speeds. When the distance between supports is increased, it is observed that the spring-back increases but the thrust force decreases. The study proves the feasibility of unsupported drilling of thin CFRP laminates without creating any observable damage.

Comparative Life Cycle Assessment of High Barrier Polymer Packaging for Selecting Resource Efficient and Environmentally Low-Impact Materials

In this study tree types of multilayer gas barrier plastic packaging films were compared using life cycle assessment as a tool for resource efficient and environmentally low-impact materials selection. The first type of multilayer packaging film (PET-AlOx/LDPE) consists of polyethylene terephthalate with barrier layer AlOx (PET-AlOx) and low density polyethylene (LDPE). The second type of polymer film (PET/PE-EVOH-PE) is made of polyethylene terephthalate (PET) and co-extrusion film PE-EVOH-PE as barrier layer. And the third one type of multilayer packaging film (PET-PVOH/LDPE) is formed from polyethylene terephthalate with barrier layer PVOH (PET-PVOH) and low density polyethylene (LDPE). All of analyzed packaging has significant impact to resource depletion, because of raw materials extraction and energy use and production of different kind of plastics. Nevertheless the impact generated during life cycle of functional unit of II type of packaging (PET/PE-EVOH-PE) was about 25% lower than impact generated by I type (PET-AlOx/LDPE) and III type (PET-PVOH/LDPE) of packaging. Result revealed that the contribution of different gas barrier type to the overall environmental problem of packaging is not significant. The impact are mostly generated by using energy and materials during raw material extraction and production of different plastic materials as plastic polymers material as PE, LDPE and PET, but not gas barrier materials as AlOx, PVOH and EVOH. The LCA results could be useful in different decision-making processes, for selecting resource efficient and environmentally low-impact materials.

Biodegradation of Polyhydroxybutyrate-Co- Hydroxyvalerate (PHBV) Blended with Natural Rubber in Soil Environment

According to synthetic plastics obtained from petroleum cause some environmental problems. Therefore, degradable plastics become widely used and studied for replacing the synthetic plastic waste. A biopolymer of poly hydroxybutyrate-co-hydroxyvalerate (PHBV) is subgroups of a main kind of polyhydroxyalkanoates (PHAs). Naturally, PHBV is hard, brittle and low flexible while natural rubber (NR) is high elastic latex. Then, they are blended and the biodegradation of the blended PHBV and NR films were examined in soil environment. The results showed that the degradation occurs predominantly in the bulk of the samples. The order of biodegradability was shown as follows: PHBV> PHBV/NR> NR. After biodegradation, the blended films were characterized by appearance analysis such as Scanning Electron Microscope (SEM), Fourier transform infrared spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC). It was found that the biodegradation mainly occurred at the polymer surface.

Analytical Prediction of Seismic Response of Steel Frames with Superelastic Shape Memory Alloy

Superelastic Shape Memory Alloy (SMA) is accepted when it used as connection in steel structures. The seismic behaviour of steel frames with SMA is being assessed in this study. Three eightstorey steel frames with different SMA systems are suggested, the first one of which is braced with diagonal bracing system, the second one is braced with nee bracing system while the last one is which the SMA is used as connection at the plastic hinge regions of beams. Nonlinear time history analyses of steel frames with SMA subjected to two different ground motion records have been performed using Seismostruct software. To evaluate the efficiency of suggested systems, the dynamic responses of the frames were compared. From the comparison results, it can be concluded that using SMA element is an effective way to improve the dynamic response of structures subjected to earthquake excitations. Implementing the SMA braces can lead to a reduction in residual roof displacement. The shape memory alloy is effective in reducing the maximum displacement at the frame top and it provides a large elastic deformation range. SMA connections are very effective in dissipating energy and reducing the total input energy of the whole frame under severe seismic ground motion. Using of the SMA connection system is more effective in controlling the reaction forces at the base frame than other bracing systems. Using SMA as bracing is more effective in reducing the displacements. The efficiency of SMA is dependant on the input wave motions and the construction system as well.

The Shaping of a Triangle Steel Plate into an Equilateral Vertical Steel by Finite-Element Modeling

The orthogonal processes to shape the triangle steel plate into a equilateral vertical steel are examined by an incremental elasto-plastic finite-element method based on an updated Lagrangian formulation. The highly non-linear problems due to the geometric changes, the inelastic constitutive behavior and the boundary conditions varied with deformation are taken into account in an incremental manner. On the contact boundary, a modified Coulomb friction mode is specially considered. A weighting factor r-minimum is employed to limit the step size of loading increment to linear relation. In particular, selective reduced integration was adopted to formulate the stiffness matrix. The simulated geometries of verticality could clearly demonstrate the vertical processes until unloading. A series of experiments and simulations were performed to validate the formulation in the theory, leading to the development of the computer codes. The whole deformation history and the distribution of stress, strain and thickness during the forming process were obtained by carefully considering the moving boundary condition in the finite-element method. Therefore, this modeling can be used for judging whether a equilateral vertical steel can be shaped successfully. The present work may be expected to improve the understanding of the formation of the equilateral vertical steel.

The Potential of Natural Waste (Corn Husk) for Production of Environmental Friendly Biodegradable Film for Seedling

The use of plastic materials in agriculture causes serious hazards to the environment. The introduction of biodegradable materials, which can be disposed directly into the soil can be one possible solution to this problem. In the present research results of experimental tests carried out on biodegradable film fabricated from natural waste (corn husk) are presented. The film was characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimeter (DSC), thermal gravimetric analysis (TGA) and atomic force microscope (AFM) observation. The film is shown to be readily degraded within 7-9 months under controlled soil conditions, indicating a high biodegradability rate. The film fabricated was use to produce biodegradable pot (BioPot) for seedlings plantation. The introduction and the expanding use of biodegradable materials represent a really promising alternative for enhancing sustainable and environmentally friendly agricultural activities.

Degradability Studies of Photodegradable Plastic Film

Polypropylene blended with natural oil and pigment additives has been studied. Different formulations for each compound were made into polybag used for cultivation of oil palm seedlings for strength and mechanical properties studies. One group of sample was exposed under normal sunlight to initiate degradation and another group of sample was placed under shaded area for five months. All samples were tested for tensile strength to determine the degradation effects. The tensile strength of directly exposed sunlight samples and shaded area showed up to 50% and 25% degradation respectively. However, similar reduction of Young’s modulus for all samples was found for both exposures. Structural investigations were done using FTIR to detect deformation. The natural additives that were used in the studies were all natural and environmental friendly

The Effect of Saturates on Rheological and Aging Characteristics of Bitumen

According to Rostler method (ASTM D 2006), saturates content of bitumen is determined based on its reactivity to sulphuric acid. While Corbett method (ASTM D 4124) based on its polarity level. This paper presents results from the study on the effect of saturates content determined by two different fractionation methods on the rheological and aging characteristics of bitumen. The result indicated that the increment of saturates content tended to reduce all the rheological characteristics concerned. Bitumen became less elastic, less viscous, and less resistant to plastic deformation, but became more resistant to fatigue cracking. After short and long term aging process, the treatment effect coefficients of saturates decreased, saturates became thicker due to aging process. This study concludes that saturates is not really stable or reactive in aging process. Therefore, the reactivity of saturates should be considered in bitumen aging index

Dynamic Analysis of Nonlinear Models with Infinite Extension by Boundary Elements

The Time-Domain Boundary Element Method (TDBEM) is a well known numerical technique that handles quite properly dynamic analyses considering infinite dimension media. However, when these analyses are also related to nonlinear behavior, very complex numerical procedures arise considering the TD-BEM, which may turn its application prohibitive. In order to avoid this drawback and model nonlinear infinite media, the present work couples two BEM formulations, aiming to achieve the best of two worlds. In this context, the regions expected to behave nonlinearly are discretized by the Domain Boundary Element Method (D-BEM), which has a simpler mathematical formulation but is unable to deal with infinite domain analyses; the TD-BEM is employed as in the sense of an effective non-reflexive boundary. An iterative procedure is considered for the coupling of the TD-BEM and D-BEM, which is based on a relaxed renew of the variables at the common interfaces. Elastoplastic models are focused and different time-steps are allowed to be considered by each BEM formulation in the coupled analysis.

Flexible Sensor Array with Programmable Measurement System

This study is concerned with pH solution detection using 2 × 4 flexible sensor array based on a plastic polyethylene terephthalate (PET) substrate that is coated a conductive layer and a ruthenium dioxide (RuO2) sensitive membrane with the technologies of screen-printing and RF sputtering. For data analysis, we also prepared a dynamic measurement system for acquiring the response voltage and analyzing the characteristics of the working electrodes (WEs), such as sensitivity and linearity. In this condition, an array measurement system was designed to acquire the original signal from sensor array, and it is based on the method of digital signal processing (DSP). The DSP modifies the unstable acquisition data to a direct current (DC) output using the technique of digital filter. Hence, this sensor array can obtain a satisfactory yield, 62.5%, through the design measurement and analysis system in our laboratory.

Design and Analysis of an Automobile Bumper with the Capacity of Energy Release Using GMT Materials

Bumpers play an important role in preventing the impact energy from being transferred to the automobile and passengers. Saving the impact energy in the bumper to be released in the environment reduces the damages of the automobile and passengers. The goal of this paper is to design a bumper with minimum weight by employing the Glass Material Thermoplastic (GMT) materials. This bumper either absorbs the impact energy with its deformation or transfers it perpendicular to the impact direction. To reach this aim, a mechanism is designed to convert about 80% of the kinetic impact energy to the spring potential energy and release it to the environment in the low impact velocity according to American standard1. In addition, since the residual kinetic energy will be damped with the infinitesimal elastic deformation of the bumper elements, the passengers will not sense any impact. It should be noted that in this paper, modeling, solving and result-s analysis are done in CATIA, LS-DYNA and ANSYS V8.0 software respectively.

Determination of Stress-Strain Characteristics of Railhead Steel using Image Analysis

True stress-strain curve of railhead steel is required to investigate the behaviour of railhead under wheel loading through elasto-plastic Finite Element (FE) analysis. To reduce the rate of wear, the railhead material is hardened through annealing and quenching. The Australian standard rail sections are not fully hardened and hence suffer from non-uniform distribution of the material property; usage of average properties in the FE modelling can potentially induce error in the predicted plastic strains. Coupons obtained at varying depths of the railhead were, therefore, tested under axial tension and the strains were measured using strain gauges as well as an image analysis technique, known as the Particle Image Velocimetry (PIV). The head hardened steel exhibit existence of three distinct zones of yield strength; the yield strength as the ratio of the average yield strength provided in the standard (σyr=780MPa) and the corresponding depth as the ratio of the head hardened zone along the axis of symmetry are as follows: (1.17 σyr, 20%), (1.06 σyr, 20%-80%) and (0.71 σyr, > 80%). The stress-strain curves exhibit limited plastic zone with fracture occurring at strain less than 0.1.

Optimum Design of Pressure Vessel Subjected to Autofrettage Process

The effect of autofrettage process in strain hardened thick-walled pressure vessels has been investigated theoretically by finite element modeling. Equivalent von Mises stress is used as yield criterion to evaluate the optimum autofrettage pressure and the optimum radius of elastic-plastic junction. It has been observed that the optimum autofrettage pressure increases along with the working pressure. For two different working pressures, the effect of the ratio of outer to inner radius (b/a=k) value on the optimum autofrettage pressure is also noticed. The Optimum autofrettage pressure solely depends on K value rather than on the inner or outer radius. Furthermore, percentage reduction of von Mises stresses is compared for different working pressures and different k values. Maximum von Mises stress developed at different autofrettage pressure is equated for elastic perfectly plastic and elastic-plastic material with different slope of strain hardening segment. Cylinder material having higher slope of strain hardening segment provides better benedictions in the autofrettage process.

Nanocrystalline Mg-3%Al Alloy: its Synthesis and Investigation of its Tensile Behavior

The tensile properties of Mg-3%Al nanocrystalline alloys were investigated at different test environment. Bulk nanocrystalline samples of these alloy was successfully prepared by mechanical alloying (MA) followed by cold compaction, sintering, and hot extrusion process. The crystal size of the consolidated milled sample was calculated by X-Ray line profile analysis. The deformation mechanism and microstructural characteristic at different test condition was discussed extensively. At room temperature, relatively lower value of activation volume (AV) and higher value of strain rate sensitivity (SRS) suggests that new rate controlling mechanism accommodating plastic flow in the present nanocrystalline sample. The deformation behavior and the microstructural character of the present samples were discussed in details.