Power Flow Analysis for Radial Distribution System Using Backward/Forward Sweep Method

This paper proposes a backward/forward sweep method to analyze the power flow in radial distribution systems. The distribution system has radial structure and high R/X ratios. So the newton-raphson and fast decoupled methods are failed with distribution system. The proposed method presents a load flow study using backward/forward sweep method, which is one of the most effective methods for the load-flow analysis of the radial distribution system. By using this method, power losses for each bus branch and voltage magnitudes for each bus node are determined. This method has been tested on IEEE 33-bus radial distribution system and effective results are obtained using MATLAB.

Influence of Internal Topologies on Components Produced by Selective Laser Melting: Numerical Analysis

Regardless of the manufacturing process used, subtractive or additive, material, purpose and application, produced components are conventionally solid mass with more or less complex shape depending on the production technology selected. Aspects such as reducing the weight of components, associated with the low volume of material required and the almost non-existent material waste, speed and flexibility of production and, primarily, a high mechanical strength combined with high structural performance, are competitive advantages in any industrial sector, from automotive, molds, aviation, aerospace, construction, pharmaceuticals, medicine and more recently in human tissue engineering. Such features, properties and functionalities are attained in metal components produced using the additive technique of Rapid Prototyping from metal powders commonly known as Selective Laser Melting (SLM), with optimized internal topologies and varying densities. In order to produce components with high strength and high structural and functional performance, regardless of the type of application, three different internal topologies were developed and analyzed using numerical computational tools. The developed topologies were numerically submitted to mechanical compression and four point bending testing. Finite Element Analysis results demonstrate how different internal topologies can contribute to improve mechanical properties, even with a high degree of porosity relatively to fully dense components. Results are very promising not only from the point of view of mechanical resistance, but especially through the achievement of considerable variation in density without loss of structural and functional high performance.

Fuzzy Logic Based Maximum Power Point Tracking Designed for 10kW Solar Photovoltaic System with Different Membership Functions

The electric power supplied by a photovoltaic power generation systems depends on the solar irradiation and temperature. The PV system can supply the maximum power to the load at a particular operating point which is generally called as maximum power point (MPP), at which the entire PV system operates with maximum efficiency and produces its maximum power. Hence, a Maximum power point tracking (MPPT) methods are used to maximize the PV array output power by tracking continuously the maximum power point. The proposed MPPT controller is designed for 10kW solar PV system installed at Cape Institute of Technology. This paper presents the fuzzy logic based MPPT algorithm. However, instead of one type of membership function, different structures of fuzzy membership functions are used in the FLC design. The proposed controller is combined with the system and the results are obtained for each membership functions in Matlab/Simulink environment. Simulation results are decided that which membership function is more suitable for this system.

Adaptive Noise Reduction Algorithm for Speech Enhancement

In this paper, Least Mean Square (LMS) adaptive noise reduction algorithm is proposed to enhance the speech signal from the noisy speech. In this, the speech signal is enhanced by varying the step size as the function of the input signal. Objective and subjective measures are made under various noises for the proposed and existing algorithms. From the experimental results, it is seen that the proposed LMS adaptive noise reduction algorithm reduces Mean square Error (MSE) and Log Spectral Distance (LSD) as compared to that of the earlier methods under various noise conditions with different input SNR levels. In addition, the proposed algorithm increases the Peak Signal to Noise Ratio (PSNR) and Segmental SNR improvement (ΔSNRseg) values; improves the Mean Opinion Score (MOS) as compared to that of the various existing LMS adaptive noise reduction algorithms. From these experimental results, it is observed that the proposed LMS adaptive noise reduction algorithm reduces the speech distortion and residual noise as compared to that of the existing methods.

Retrieving Similar Segmented Objects Using Motion Descriptors

The fuzzy composition of objects depicted in images acquired through MR imaging or the use of bio-scanners has often been a point of controversy for field experts attempting to effectively delineate between the visualized objects. Modern approaches in medical image segmentation tend to consider fuzziness as a characteristic and inherent feature of the depicted object, instead of an undesirable trait. In this paper, a novel technique for efficient image retrieval in the context of images in which segmented objects are either crisp or fuzzily bounded is presented. Moreover, the proposed method is applied in the case of multiple, even conflicting, segmentations from field experts. Experimental results demonstrate the efficiency of the suggested method in retrieving similar objects from the aforementioned categories while taking into account the fuzzy nature of the depicted data.

Investigation of Long-Term Thermal Insulation Performance of Vacuum Insulation Panels with Various Enveloping Methods

To practically apply vacuum insulation panels (VIPs) to buildings or home appliances, VIPs have demanded long-term lifespan with outstanding insulation performance. Service lives of VIPs enveloped with Al-foil and three-layer Al-metallized envelope are calculated. For Al-foil envelope, the service life is longer but edge conduction is too large compared with the Al-metallized envelope. To increase service life even more, the proposed double enveloping method and metal-barrier-added enveloping method are further analyzed. The service lives of the VIP to employ two enveloping methods are calculated. Also, pressure increase and thermal insulation performance characteristics are investigated. For the metalbarrier- added enveloping method, effective thermal conductivity increase with time is close to that of Al-foil envelope, especially, for getter-inserted VIPs. For double enveloping method, if water vapor is perfectly adsorbed, the effect of service life enhancement becomes much greater. From these methods, the VIP can be guaranteed for service life of more than 20 years.

Prediction of Seismic Damage Using Scalar Intensity Measures Based On Integration of Spectral Values

A key issue in seismic risk analysis within the context of Performance-Based Earthquake Engineering is the evaluation of the expected seismic damage of structures under a specific earthquake ground motion. The assessment of the seismic performance strongly depends on the choice of the seismic Intensity Measure (IM), which quantifies the characteristics of a ground motion that are important to the nonlinear structural response. Several conventional IMs of ground motion have been used to estimate their damage potential to structures. Yet, none of them has been proved to be able to predict adequately the seismic damage. Therefore, alternative, scalar intensity measures, which take into account not only ground motion characteristics but also structural information have been proposed. Some of these IMs are based on integration of spectral values over a range of periods, in an attempt to account for the information that the shape of the acceleration, velocity or displacement spectrum provides. The adequacy of a number of these IMs in predicting the structural damage of 3D R/C buildings is investigated in the present paper. The investigated IMs, some of which are structure specific and some are non structure-specific, are defined via integration of spectral values. To achieve this purpose three symmetric in plan R/C buildings are studied. The buildings are subjected to 59 bidirectional earthquake ground motions. The two horizontal accelerograms of each ground motion are applied along the structural axes. The response is determined by nonlinear time history analysis. The structural damage is expressed in terms of the maximum interstory drift as well as the overall structural damage index. The values of the aforementioned seismic damage measures are correlated with seven scalar ground motion IMs. The comparative assessment of the results revealed that the structure-specific IMs present higher correlation with the seismic damage of the three buildings. However, the adequacy of the IMs for estimation of the structural damage depends on the response parameter adopted. Furthermore, it was confirmed that the widely used spectral acceleration at the fundamental period of the structure is a good indicator of the expected earthquake damage level.

Deterioration of Groundwater in Arid Environments: What Impact in Oasis Dynamics? Case Study of Tafilalet, Morocco

Oases are complex and fragile agro-ecosystems. They have always existed in environments characterized by an arid climate, scarcity of rainfall, high temperatures and high evaporation. These palms have grown up despite the severity of the physical characteristics thanks to the water's existence and irrigation practice. The oases are generally spread along non-perennial rivers (wadis), shallow water table or deep artesian groundwater. However, the sustainability of oasis system is threatened by water scarcity and declining of water table levels particularly in arid areas. Located in the southern east area of Morocco, Tafilalet plain encompasses one of the largest palm groves in the kingdom. In recent years, this area has become increasingly threatened by water shortage and has seen a sharp deterioration under the effect of several combined anthropogenic and climatic factors. The Bayoud disease, successive years of drought, Hassan Addakhil dam construction etc are all factors that have affected both water and phoenicicole heritage of the area. The objective of this study is to understand the interaction between qualitative and quantitative degradation of groundwater resources, and the palm grove dynamics, while reviewing the assumption that groundwater resources contribute in a direct way to the conservation of this oasis agroecosystem. A historical analysis tracing both the oasis dynamics and the groundwater evolution has been established. Data were collected from satellite images, surveys with different actors (farmers, Regional Office for Agricultural Development, Basin agency...). They were complemented by a synthesis of numerous technical reports in the area. The results showed that within 40 years, the thickness of the groundwater table has dropped in 50 %. Along with this, there has been a downsizing of date palm by 50 %. Areas with higher groundwater level were the least affected by the downsizing. So we can say that the shallow groundwater contribute significantly and directly to the water supply of date palm through its root system, and largely ensures the oasis ecosystem sustainability.

A Conceptual Framework on Review of E-Service Quality in Banking Industry

E-service quality plays a significant role to achieve success or failure in any organization, offering services online. It will increase the competition among the organizations, to attract the customers on the basis of the quality of service provided by the organization. Better e-service quality will enhance the relationship with customers and their satisfaction. So the measurement of eservice quality is very important but it is a complex process due to the complex nature of services. Literature predicts that there is a lack of universal definition of e-service quality. The e-service quality measures in banking have great importance in achieving high customer base. This paper proposes a conceptual model for measuring e-service quality in Indian Banking Industry. Nine dimensions reliability, ease of use, personalization, security and trust, website aesthetic, responsiveness, contact and fulfillment had been identified. The results of this paper may help to develop a proper scale to measure the e-service quality in Indian Banking Industry, which may assist to maintain and improve the performance and effectiveness of e-service quality to retain customers.

Homogeneous and Heterogeneous Catalysis: Teachings of the Thermal Energy and Power Engineering Course

It is usually difficult for students to understand some basic theories in learning thermal energy and power engineering course. A new teaching method was proposed that we should introduce the comparison research method of those theories to help them being understood. “Homogeneous and heterogeneous catalysis” teaching is analyzed as an example by comparison research method.

A Framework for Evaluation of Enterprise Architecture Implementation Methodologies

Enterprise Architecture (EA) Implementation Methodologies have become an important part of EA projects. Several implementation methodologies have been proposed, as a theoretical and practical approach, to facilitate and support the development of EA within an enterprise. A significant question when facing the starting of EA implementation is deciding which methodology to utilize. In order to answer this question, a framework with several criteria is applied in this paper for the comparative analysis of existing EA implementation methodologies. Five EA implementation methodologies including: EAP, TOGAF, DODAF, Gartner, and FEA are selected in order to compare with proposed framework. The results of the comparison indicate that those methodologies have not reached a sufficient maturity as whole due to lack of consideration on requirement management, maintenance, continuum, and complexities in their process. The framework has also ability for the evaluation of any kind of EA implementation methodologies.

Measurement of VIP Edge Conduction Using Vacuum Guarded Hot Plate

Vacuum insulation panel (VIP) is a promising thermal insulator for buildings, refrigerator, LNG carrier and so on. In general, it has the thermal conductivity of 2~4 mW/m·K. However, this thermal conductivity is that measured at the center of VIP. The total effective thermal conductivity of VIP is larger than this value due to the edge conduction through the envelope. In this paper, the edge conduction of VIP is examined theoretically, numerically and experimentally. To confirm the existence of the edge conduction, numerical analysis is performed for simple two-dimensional VIP model and a theoretical model is proposed to calculate the edge conductivity. Also, the edge conductivity is measured using the vacuum guarded hot plate and the experiment is validated against numerical analysis. The results show that the edge conductivity is dependent on the width of panel and thickness of Al-foil. To reduce the edge conduction, it is recommended that the VIP should be made as big as possible or made of thin Al film envelope.

Enhancing Security in Resource Sharing Using Key Holding Mechanism

This paper describes a logical method to enhance security on the grid computing to restrict the misuse of the grid resources. This method is an economic and efficient one to avoid the usage of the special devices. The security issues, techniques and solutions needed to provide a secure grid computing environment are described. A well defined process for security management among the resource accesses and key holding algorithm is also proposed. In this method, the identity management, access control and authorization and authentication are effectively handled.

Automatic Detection and Classification of Microcalcification, Mass, Architectural Distortion and Bilateral Asymmetry in Digital Mammogram

Mammography has been one of the most reliable methods for early detection of breast cancer. There are different lesions which are breast cancer characteristic such as microcalcifications, masses, architectural distortions and bilateral asymmetry. One of the major challenges of analysing digital mammogram is how to extract efficient features from it for accurate cancer classification. In this paper we proposed a hybrid feature extraction method to detect and classify all four signs of breast cancer. The proposed method is based on multiscale surrounding region dependence method, Gabor filters, multi fractal analysis, directional and morphological analysis. The extracted features are input to self adaptive resource allocation network (SRAN) classifier for classification. The validity of our approach is extensively demonstrated using the two benchmark data sets Mammographic Image Analysis Society (MIAS) and Digital Database for Screening Mammograph (DDSM) and the results have been proved to be progressive.

Improved Skin Detection Using Colour Space and Texture

Skin detection is an important task for computer vision systems. A good method of skin detection means a good and successful result of the system. The colour is a good descriptor for image segmentation and classification; it allows detecting skin colour in the images. The lighting changes and the objects that have a colour similar than skin colour make the operation of skin detection difficult. In this paper, we proposed a method using the YCbCr colour space for skin detection and lighting effects elimination, then we use the information of texture to eliminate the false regions detected by the YCbCr skin model.

Video Shot Detection and Key Frame Extraction Using Faber Shauder DWT and SVD

Key frame extraction methods select the most representative frames of a video, which can be used in different areas of video processing such as video retrieval, video summary, and video indexing. In this paper we present a novel approach for extracting key frames from video sequences. The frame is characterized uniquely by his contours which are represented by the dominant blocks. These dominant blocks are located on the contours and its near textures. When the video frames have a noticeable changement, its dominant blocks changed, then we can extracte a key frame. The dominant blocks of every frame is computed, and then feature vectors are extracted from the dominant blocks image of each frame and arranged in a feature matrix. Singular Value Decomposition is used to calculate sliding windows ranks of those matrices. Finally the computed ranks are traced and then we are able to extract key frames of a video. Experimental results show that the proposed approach is robust against a large range of digital effects used during shot transition.

A Systemic Maturity Model

Maturity models, used descriptively to explain changes in reality or normatively to guide managers to make interventions to make organizations more effective and efficient, are based on the principles of statistical quality control and PDCA continuous improvement (Plan, Do, Check, Act). Some frameworks developed over the concept of maturity models include COBIT, CMM, and ITIL. This paper presents some limitations of traditional maturity models, most of them related to the mechanistic and reductionist principles over which those models are built. As systems theory helps the understanding of the dynamics of organizations and organizational change, the development of a systemic maturity model can help to overcome some of those limitations. This document proposes a systemic maturity model, based on a systemic conceptualization of organizations, focused on the study of the functioning of the parties, the relationships among them, and their behavior as a whole. The concept of maturity from the system theory perspective is conceptually defined as an emergent property of the organization, which arises as a result of the degree of alignment and integration of their processes. This concept is operationalized through a systemic function that measures the maturity of organizations, and finally validated by the measuring of maturity in some organizations. For its operationalization and validation, the model was applied to measure the maturity of organizational Governance, Risk and Compliance (GRC) processes.

Global GMRES with Deflated Restarting for Families of Shifted Linear Systems

Many problems in science and engineering field require the solution of shifted linear systems with multiple right hand sides and multiple shifts. To solve such systems efficiently, the implicitly restarted global GMRES algorithm is extended in this paper. However, the shift invariant property could no longer hold over the augmented global Krylov subspace due to adding the harmonic Ritz matrices. To remedy this situation, we enforce the collinearity condition on the shifted system and propose shift implicitly restarted global GMRES. The new method not only improves the convergence but also has a potential to simultaneously compute approximate solution for the shifted systems using only as many matrix vector multiplications as the solution of the seed system requires. In addition, some numerical experiments also confirm the effectiveness of our method.

Life Cycle Assessment of Expressway Passenger Transport Service: A Case Study of Thailand

This research work is concerned with the life cycle assessment (LCA) of an expressway, as well as its infrastructure, in Thailand. The life cycle of an expressway encompasses the raw material acquisition phase, the construction phase, the use or service phase, the rehabilitation phase, and finally the demolition and disposal phase. The LCA in this research was carried out using CML baseline 2000 and in accordance with the ISO 14040 standard. A functional unit refers to transportation of one person over one kilometer of a 3-lane expressway with a 50-year lifetime. This research has revealed that the construction phase produced the largest proportion of the environmental impact (81.46%), followed by the service, rehabilitation, demolition and disposal phases and transportation at 11.97%, 3.72% 0.33% and 2.52%, respectively. For the expressway under study, the total carbon footprint over its lifetime is equivalent to 245,639 tons CO2-eq per 1 kilometer functional unit, with the phases of construction, service, rehabilitation, demolition and disposal and transportation contributing 153,690; 73,773; 3693, 755 and 13,728 tons CO2-eq, respectively. The findings could be adopted as a benchmark against which the environmental impacts of future similar projects can be measured.

Frequency Controller Design for Distributed Generation by Load Shedding: Multi-Agent Systems Approach

Frequency stability of microgrids under islanded operation attracts particular attention recently. A new cooperative frequency control strategy based on centralized multi-agent system (CMAS) is proposed in this study. Based on this strategy, agents sent data and furthermore each component has its own to center operating decisions (MGCC).After deciding on the information, they are returned. Frequency control strategies include primary and secondary frequency control and disposal of multi-stage load in which this study will also provide a method and algorithm for load shedding. This could also be a big problem for the performance of micro-grid in times of disaster. The simulation results show the promising performance of the proposed structure of the controller based on multi agent systems.