On the Analysis of IP Traffic Distribution in the Network of Suranaree University of Technology

This paper presents the IP traffic analysis. The traffic was collected from the network of Suranaree University of Technology using the software based on the Simple Network Management Protocol (SNMP). In particular, we analyze the distribution of the aggregated traffic during the hours of peak load and light load. The traffic profiles including the parameters described the traffic distributions were derived. From the statistical analysis applying three different methods, including the Kolmogorov Smirnov test, Anderson Darling test, and Chi-Squared test, we found that the IP traffic distribution is a non-normal distribution and the distributions during the peak load and the light load are different. The experimental study and analysis show high uncertainty of the IP traffic.

Heat-treated or Raw Sunflower Seeds in Lactating Dairy Cows Diets: Effects on Milk Fatty Acids Profile and Milk Production

The objective of this study was to investigate the effects of dietary supplementation with raw or heat-treated sunflower oil seed with two levels of 7.5% or 15% on unsaturated fatty acids in milk fat and performances of high-yielding lactating cows. Twenty early lactating Holstein cows were used in a complete randomized design. Treatments included: 1) CON, control (without sunflower oil seed). 2) LS-UT, 7.5% raw sunflower oil seed. 3) LS-HT, 7.5% heat-treated sunflower oil seed. 4) HS-UT, 15% raw sunflower oil seed. 5) HS-HT, 15% heat-treated sunflower oil seed. Experimental period lasted for 4 wk, with first 2 wk used for adaptation to the diets. Supplementation with 7.5% raw sunflower seed (LS-UT) tended to decrease milk yield, with 28.37 kg/d compared with the control (34.75 kg/d). Milk fat percentage was increased with the HS-UT treatment that obtained 3.71% compared with CON that was 3.39% and without significant different. Milk protein percent was decreased high level sunflower oil seed treatments (15%) with 3.18% whereas CON treatment is caused 3.40% protein. The cows fed added low sunflower heat-treated (LS-HT) produced milk with the highest content of total unsaturated fatty acid with 32.59 g/100g of milk fat compared with the HS-UT with 23.59 g/100g of milk fat. Content of C18 unsaturated fatty acids in milk fat increased from 21.68 g/100g of fat in the HS-UT to 22.50, 23.98, 27.39 and 30.30 g/100g of fat from the cow fed HS-HT, CON, LS-UT and LS-HT treatments, respectively. C18:2 isomers of fatty acid in milk were greater by LSHT supplementation with significant effect (P < 0.05). Total of C18 unsaturated fatty acids content was significantly higher in milk of animal fed added low heat-treated sunflower (7.5%) than those fed with high sunflower. In all, results of this study showed that diet cow's supplementation with sunflower oil seed tended to reduce milk production of lactating cows but can improve C18 UFA (Unsaturated Fatty Acid) content in milk fat. 7.5% level of sunflower oil seed that heated seemed to be the optimal source to increase UFA production.

Multi-Element Synthetic Transmit Aperture Method in Medical Ultrasound Imaging

The paper presents the multi-element synthetic transmit aperture (MSTA) method with a small number of elements transmitting and all elements apertures in medical ultrasound imaging. As compared to the other methods MSTA allows to increase the system frame rate and provides the best compromise between penetration depth and lateral resolution. In the experiments a 128-element linear transducer array with 0.3 mm pitch excited by a burst pulse of 125 ns duration were used. The comparison of 2D ultrasound images of tissue mimicking phantom obtained using the STA and the MSTA methods is presented to demonstrate the benefits of the second approach. The results were obtained using SA algorithm with transmit and receive signals correction based on a single element directivity function.

Multiple-Points Fault Signature's Dynamics Modeling for Bearing Defect Frequencies

Occurrence of a multiple-points fault in machine operations could result in exhibiting complex fault signatures, which could result in lowering fault diagnosis accuracy. In this study, a multiple-points defect model (MPDM) is proposed which can simulate fault signature-s dynamics for n-points bearing faults. Furthermore, this study identifies that in case of multiple-points fault in the rotary machine, the location of the dominant component of defect frequency shifts depending upon the relative location of the fault points which could mislead the fault diagnostic model to inaccurate detections. Analytical and experimental results are presented to characterize and validate the variation in the dominant component of defect frequency. Based on envelop detection analysis, a modification is recommended in the existing fault diagnostic models to consider the multiples of defect frequency rather than only considering the frequency spectrum at the defect frequency in order to incorporate the impact of multiple points fault.

A Force-directed Graph Drawing based on the Hierarchical Individual Timestep Method

In this paper, we propose a fast and efficient method for drawing very large-scale graph data. The conventional force-directed method proposed by Fruchterman and Rheingold (FR method) is well-known. It defines repulsive forces between every pair of nodes and attractive forces between connected nodes on a edge and calculates corresponding potential energy. An optimal layout is obtained by iteratively updating node positions to minimize the potential energy. Here, the positions of the nodes are updated every global timestep at the same time. In the proposed method, each node has its own individual time and time step, and nodes are updated at different frequencies depending on the local situation. The proposed method is inspired by the hierarchical individual time step method used for the high accuracy calculations for dense particle fields such as star clusters in astrophysical dynamics. Experiments show that the proposed method outperforms the original FR method in both speed and accuracy. We implement the proposed method on the MDGRAPE-3 PCI-X special purpose parallel computer and realize a speed enhancement of several hundred times.

Effects of Drought on Microbial Activity in Rhizosphere, Soil Hydrophobicity and Leaching of Mineral Nitrogen from Arable Soil Depending on Method of Fertilization

This work presents the first results from the long-term laboratory experiment dealing with impact of drought on soil properties. Three groups of the treatment (A, B and C) with different regime of irrigation were prepared. The soil water content was maintained at 70 % of soil water holding capacity in group A, at 40 % in group B. In group C, soil water regime was maintained in the range of wilting point. Each group of the experiment was divided into three variants (A1 = B1, C1; A2 = B2, C2 etc.) with three repetitions: Variants A1 (B1, C1) were a controls without addition of another fertilizer. Variants A2 (B2, C2) were fertilized with mineral nitrogen fertilizer DAM 390 (0.140 Mg of N per ha) and variants A3 (B3, C3) contained 45 g of Cp per a pot. The significant differences (ANOVA, P

Direct Numerical Simulation of Subcooled Nucleate Pool Boiling

With the long-term objective of Critical Heat Flux (CHF) prediction, a Direct Numerical Simulation (DNS) framework for simulation of subcooled and saturated nucleate pool boiling is developed. One case of saturated, and three cases of subcooled boiling at different subcooling levels are simulated. Grid refinement study is also reported. Both boiling and condensation phenomena can be computed simultaneously in the proposed numerical framework. Computed bubble detachment diameters of the saturated nucleate pool boiling cases agree well with the experiment. The flow structures around the growing bubble are presented and the accompanying physics is described. The relation between heat flux evolution from the heated wall and the bubble growth is studied, along with investigations of temperature distribution and flow field evolutions.

Experimental Study of Fuel Tank Filling

The refueling of a transparent rectangular fuel tank fitted with a standard filler pipe and roll-over valve was experimentally studied. A fuel-conditioning cart, capable of handling fuels of different Reid vapor pressure at a constant temperature, was used to dispense fuel at the desired rate. The experimental protocol included transient recording of the tank and filler tube pressures while video recording the flow patterns in the filler tube and tank during the refueling process. This information was used to determine the effect of changes in the vent tube diameter, fuel-dispense flow rate and fuel Reid vapor pressure on the pressure-time characteristics and the occurrence of premature fuel filling shut-off and fuel spill-back. Pressure-time curves for the case of normal shut-off demonstrated the classic, three-phase characteristic noted in the literature. The variation of the maximum values of tank dome and filler tube pressures are analyzed in relation to the occurrence of premature shut-off.

A Thai to English Machine Translation System Using Thai LFG Tree Structure as Interlingua

Machine Translation (MT) between the Thai and English languages has been a challenging research topic in natural language processing. Most research has been done on English to Thai machine translation, but not the other way around. This paper presents a Thai to English Machine Translation System that translates a Thai sentence into interlingua of a Thai LFG tree using LFG grammar and a bottom up parser. The Thai LFG tree is then transformed into the corresponding English LFG tree by pattern matching and node transformation. Finally, an equivalent English sentence is created using structural information prescribed by the English LFG tree. Based on results of experiments designed to evaluate the performance of the proposed system, it can be stated that the system has been proven to be effective in providing a useful translation from Thai to English.

Spread Spectrum Code Estimation by Genetic Algorithm

In the context of spectrum surveillance, a method to recover the code of spread spectrum signal is presented, whereas the receiver has no knowledge of the transmitter-s spreading sequence. The approach is based on a genetic algorithm (GA), which is forced to model the received signal. Genetic algorithms (GAs) are well known for their robustness in solving complex optimization problems. Experimental results show that the method provides a good estimation, even when the signal power is below the noise power.

Chaotic Properties of Hemodynamic Responsein Functional Near Infrared Spectroscopic Measurement of Brain Activity

Functional near infrared spectroscopy (fNIRS) is a practical non-invasive optical technique to detect characteristic of hemoglobin density dynamics response during functional activation of the cerebral cortex. In this paper, fNIRS measurements were made in the area of motor cortex from C4 position according to international 10-20 system. Three subjects, aged 23 - 30 years, were participated in the experiment. The aim of this paper was to evaluate the effects of different motor activation tasks of the hemoglobin density dynamics of fNIRS signal. The chaotic concept based on deterministic dynamics is an important feature in biological signal analysis. This paper employs the chaotic properties which is a novel method of nonlinear analysis, to analyze and to quantify the chaotic property in the time series of the hemoglobin dynamics of the various motor imagery tasks of fNIRS signal. Usually, hemoglobin density in the human brain cortex is found to change slowly in time. An inevitable noise caused by various factors is to be included in a signal. So, principle component analysis method (PCA) is utilized to remove high frequency component. The phase pace is reconstructed and evaluated the Lyapunov spectrum, and Lyapunov dimensions. From the experimental results, it can be conclude that the signals measured by fNIRS are chaotic.

Development of Position Changing System for Obstructive Sleep Apnea Patient using HRV

Obstructive sleep apnea in patients, between 70 and 80 percent, can be cured with just a posture correcting. The most import thing to do this is detection of obstructive sleep apnea. Detection of obstructive sleep apnea can be performed through heart rate variability analysis using power spectrum density analysis. After HRV analysis we needed to know the current position information for correcting the position. The pressure sensors of the array type were used to obtain position information. These sensors can obtain information from the experimenter about position. In addition, air cylinder corrected the position of the experimenter by lifting the bed. The experimenter can be changed position without breaking during sleep by the system. Polysomnograph recording were obtained from 10 patients. The results of HRV analysis were that NLF and LF/HF ratio increased, while NHF decreased during OSA. Position change had to be done the periods.

Thermal Distribution in Axial-Flow Fixed Bed with Flowing Gas

This paper reported an experimental research of steady-state heat transfer behaviour of a gas flowing through a fixed bed under the different operating conditions. Studies had been carried out in a fixed-bed packed methanol synthesis catalyst percolated by air at appropriate flow rate. Both radial and axial direction temperature distribution had been investigated under the different operating conditions. The effects of operating conditions including the reactor inlet air temperature, the heating pipe temperature and the air flow rate on temperature distribution was investigated and the experimental results showed that a higher inlet air temperature was conducive to uniform temperature distribution in the fixed bed. A large temperature drop existed at the radial direction, and the temperature drop increased with the heating pipe temperature increasing under the experimental conditions; the temperature profile of the vicinity of the heating pipe was strongly affected by the heating pipe temperature. A higher air flow rate can improve the heat transfer in the fixed bed. Based on the thermal distribution, heat transfer models of the fixed bed could be established, and the characteristics of the temperature distribution in the fixed bed could be finely described, that had an important practical significance.

Removal of Iron from Groundwater by Sulfide Precipitation

Iron in groundwater is one of the problems that render the water unsuitable for drinking. The concentration above 0.3 mg/L is common in groundwater. The conventional method of removal is by precipitation under oxic condition. In this study, iron removal under anaerobic conditions was examined by batch experiment as a main purpose. The process involved by purging of groundwater samples with H2S to form iron sulfide. Removal up to 83% for 1 mg/L iron solution was achieved. The removal efficiency dropped to 82% and 75% for the higher initial iron concentrations 3.55 and 5.01 mg/L, respectively. The average residual sulfide concentration in water after the process was 25*g/L. The Eh level during the process was -272 mV. The removal process was found to follow the first order reaction with average rate constant of 4.52 x 10-3. The half-life for the concentrations to reduce from initial values was 157 minutes.

Wireless Distributed Load-Shedding Management System for Non-Emergency Cases

In this paper, we present a cost-effective wireless distributed load shedding system for non-emergency scenarios. In power transformer locations where SCADA system cannot be used, the proposed solution provides a reasonable alternative that combines the use of microcontrollers and existing GSM infrastructure to send early warning SMS messages to users advising them to proactively reduce their power consumption before system capacity is reached and systematic power shutdown takes place. A novel communication protocol and message set have been devised to handle the messaging between the transformer sites, where the microcontrollers are located and where the measurements take place, and the central processing site where the database server is hosted. Moreover, the system sends warning messages to the endusers mobile devices that are used as communication terminals. The system has been implemented and tested via different experimental results.

Secure Block-Based Video Authentication with Localization and Self-Recovery

Because of the great advance in multimedia technology, digital multimedia is vulnerable to malicious manipulations. In this paper, a public key self-recovery block-based video authentication technique is proposed which can not only precisely localize the alteration detection but also recover the missing data with high reliability. In the proposed block-based technique, multiple description coding MDC is used to generate two codes (two descriptions) for each block. Although one block code (one description) is enough to rebuild the altered block, the altered block is rebuilt with better quality by the two block descriptions. So using MDC increases the ratability of recovering data. A block signature is computed using a cryptographic hash function and a doubly linked chain is utilized to embed the block signature copies and the block descriptions into the LSBs of distant blocks and the block itself. The doubly linked chain scheme gives the proposed technique the capability to thwart vector quantization attacks. In our proposed technique , anyone can check the authenticity of a given video using the public key. The experimental results show that the proposed technique is reliable for detecting, localizing and recovering the alterations.

A Fast HRRP Synthesis Algorithm with Sensing Dictionary in GTD Model

In the paper, a fast high-resolution range profile synthetic algorithm called orthogonal matching pursuit with sensing dictionary (OMP-SD) is proposed. It formulates the traditional HRRP synthetic to be a sparse approximation problem over redundant dictionary. As it employs a priori that the synthetic range profile (SRP) of targets are sparse, SRP can be accomplished even in presence of data lost. Besides, the computation complexity decreases from O(MNDK) flops for OMP to O(M(N + D)K) flops for OMP-SD by introducing sensing dictionary (SD). Simulation experiments illustrate its advantages both in additive white Gaussian noise (AWGN) and noiseless situation, respectively.

The Problem of Using the Calculation of the Critical Path to Solver Instances of the Job Shop Scheduling Problem

A procedure commonly used in Job Shop Scheduling Problem (JSSP) to evaluate the neighborhoods functions that use the non-deterministic algorithms is the calculation of the critical path in a digraph. This paper presents an experimental study of the cost of computation that exists when the calculation of the critical path in the solution for instances in which a JSSP of large size is involved. The results indicate that if the critical path is use in order to generate neighborhoods in the meta-heuristics that are used in JSSP, an elevated cost of computation exists in spite of the fact that the calculation of the critical path in any digraph is of polynomial complexity.

Visual Object Tracking in 3D with Color Based Particle Filter

This paper addresses the problem of determining the current 3D location of a moving object and robustly tracking it from a sequence of camera images. The approach presented here uses a particle filter and does not perform any explicit triangulation. Only the color of the object to be tracked is required, but not any precisemotion model. The observation model we have developed avoids the color filtering of the entire image. That and the Monte Carlotechniques inside the particle filter provide real time performance.Experiments with two real cameras are presented and lessons learned are commented. The approach scales easily to more than two cameras and new sensor cues.

Application of Artificial Neural Network for the Prediction of Pressure Distribution of a Plunging Airfoil

Series of experimental tests were conducted on a section of a 660 kW wind turbine blade to measure the pressure distribution of this model oscillating in plunging motion. In order to minimize the amount of data required to predict aerodynamic loads of the airfoil, a General Regression Neural Network, GRNN, was trained using the measured experimental data. The network once proved to be accurate enough, was used to predict the flow behavior of the airfoil for the desired conditions. Results showed that with using a few of the acquired data, the trained neural network was able to predict accurate results with minimal errors when compared with the corresponding measured values. Therefore with employing this trained network the aerodynamic coefficients of the plunging airfoil, are predicted accurately at different oscillation frequencies, amplitudes, and angles of attack; hence reducing the cost of tests while achieving acceptable accuracy.