Effect of Gibberellic Acid and 2,4- Dichlorophenoxyacetic Acid on Fruit Development and Fruit Quality of Wax Apple

This study was conducted to evaluate the effects of gibberellic acid and 2,4- dichlorophenoxyacetic acid on flower number, fruit growth and fruit quality of wax apple. GA3 and 2,4-D were applied at small bud and petal fall stage. Number of flower, fruit set, fruit drop, fruit crack, fruit growth and fruit quality were recorded. Results indicated that spraying with 10 ppm GA3 had the best results in number of flower. GA3 spray at 30 ppm gave the faster rate of fruit growth than the other treatments. Fruit set, fruit size as well as fruit weight markedly improved by spraying 30 ppm GA3, followed by 10 ppm GA3 compared to untreated control. Moreover, spray GA3 at 30 ppm was the most effective and increased total soluble solids, reduced titratable acidity and fruit drop. On the other hand, it was noticed that with 10 ppm 2,4-D application also enhanced the fruit growth rate, improved physiological and biochemical characters of fruit compared to untreated control. It was concluded that both GA3 and 2,4-D spray have positive effects on fruit development, reduced fruit drop, fruit crack and improved fruit quality of wax apple under field conditions.

Multilevel Activation Functions For True Color Image Segmentation Using a Self Supervised Parallel Self Organizing Neural Network (PSONN) Architecture: A Comparative Study

The paper describes a self supervised parallel self organizing neural network (PSONN) architecture for true color image segmentation. The proposed architecture is a parallel extension of the standard single self organizing neural network architecture (SONN) and comprises an input (source) layer of image information, three single self organizing neural network architectures for segmentation of the different primary color components in a color image scene and one final output (sink) layer for fusion of the segmented color component images. Responses to the different shades of color components are induced in each of the three single network architectures (meant for component level processing) by applying a multilevel version of the characteristic activation function, which maps the input color information into different shades of color components, thereby yielding a processed component color image segmented on the basis of the different shades of component colors. The number of target classes in the segmented image corresponds to the number of levels in the multilevel activation function. Since the multilevel version of the activation function exhibits several subnormal responses to the input color image scene information, the system errors of the three component network architectures are computed from some subnormal linear index of fuzziness of the component color image scenes at the individual level. Several multilevel activation functions are employed for segmentation of the input color image scene using the proposed network architecture. Results of the application of the multilevel activation functions to the PSONN architecture are reported on three real life true color images. The results are substantiated empirically with the correlation coefficients between the segmented images and the original images.

Constraint Active Contour Model with Application to Automated Three-Dimensional Airway Wall Segmentation

For evaluating the severity of Chronic Obstructive Pulmonary Disease (COPD), one is interested in inspecting the airway wall thickening due to inflammation. Although airway segmentations have being well developed to reconstruct in high order, airway wall segmentation remains a challenge task. While tackling such problem as a multi-surface segmentation, the interrelation within surfaces needs to be considered. We propose a new method for three-dimensional airway wall segmentation using spring structural active contour model. The method incorporates the gravitational field of the image and repelling force field of the inner lumen as the soft constraint and the geometric spring structure of active contour as the hard constraint to approximate a three-dimensional coupled surface readily for thickness measurements. The results show the preservation of topology constraints of coupled surfaces. In conclusion, our springy, soft-tissue-like structure ensures the globally optimal solution and waives the shortness following by the inevitable improper inner surface constraint.

Electrical Impedance Imaging Using Eddy Current

Electric impedance imaging is a method of reconstructing spatial distribution of electrical conductivity inside a subject. In this paper, a new method of electrical impedance imaging using eddy current is proposed. The eddy current distribution in the body depends on the conductivity distribution and the magnetic field pattern. By changing the position of magnetic core, a set of voltage differences is measured with a pair of electrodes. This set of voltage differences is used in image reconstruction of conductivity distribution. The least square error minimization method is used as a reconstruction algorithm. The back projection algorithm is used to get two dimensional images. Based on this principle, a measurement system is developed and some model experiments were performed with a saline filled phantom. The shape of each model in the reconstructed image is similar to the corresponding model, respectively. From the results of these experiments, it is confirmed that the proposed method is applicable in the realization of electrical imaging.

Bipolar Square Wave Pulses for Liquid Food Sterilization using Cascaded H-Bridge Multilevel Inverter

This paper presents the generation of bipolar square wave pulses with characteristics that are suitable for liquid food sterilization using a Cascaded H-bridge Multilevel Inverter (CHMI). Bipolar square waves pulses have been reported as stable for a longer time during the sterilization process with minimum heat emission and increased efficiency. The CHMI allows the system to produce bipolar square wave pulses and yielding high output voltage without using a transformer while fulfilling the pulse requirements for effective liquid food sterilization. This in turn can reduce power consumption and cost of the overall liquid food sterilization system. The simulation results have shown that pulses with peak output voltage of 2.4 kV, pulse width of between 1 2s and 1 ms at frequencies of 50 Hz and 100 Hz can be generated by a 7-level CHMI. Results from the experimental set-up based on a 5-level CHMI has indicated the potential of the proposed circuit in producing bipolar square wave output pulses with peak values that depends on the DC source level supplied to the CHMI modules, pulse width of between 12.5 2s and 1 ms at frequencies of 50 Hz and 100 Hz.

Minimizing the Broadcast Traffic in the Jordanian Discovery Schools Network using PPPoE

Discovery schools in Jordan are connected in one flat ATM bridge network. All Schools connected to the network will hear broadcast traffic. High percentage of unwanted traffic such as broadcast, consumes the bandwidth between schools and QRC. Routers in QRC have high CPU utilization. The number of connections on the router is very high, and may exceed recommend manufacturing specifications. One way to minimize number of connections to the routers in QRC, and minimize broadcast traffic is to use PPPoE. In this study, a PPPoE solution has been presented which shows high performance for the clients when accessing the school server resources. Despite the large number of the discovery schools at MoE, the experimental results show that the PPPoE solution is able to yield a satisfactory performance for each client at the school and noticeably reduce the traffic broadcast to the QRC.

Multi-Enterprise Tie and Co-Operation Mechanism in Mexican Agro Industry SME's

The aim of this paper is to explain what a multienterprise tie is, what evidence its analysis provides and how does the cooperation mechanism influence the establishment of a multienterprise tie. The study focuses on businesses of smaller dimension, geographically dispersed and whose businessmen are learning to cooperate in an international environment. The empirical evidence obtained at this moment permits to conclude the following: The tie is not long-lasting, it has an end; opportunism is an opportunity to learn; the multi-enterprise tie is a space to learn about the cooperation mechanism; the local tie permits a businessman to alternate between competition and cooperation strategies; the disappearance of a tie is an experience of learning for a businessman, diminishing the possibility of failure in the next tie; the cooperation mechanism tends to eliminate hierarchical relations; the multienterprise tie diminishes the asymmetries and permits SME-s to have a better position when they negotiate with large companies; the multi-enterprise tie impacts positively on the local system. The collection of empirical evidence was done trough the following instruments: direct observation in a business encounter to which the businesses attended in 2003 (202 Mexican agro industry SME-s), a survey applied in 2004 (129), a questionnaire applied in 2005 (86 businesses), field visits to the businesses during the period 2006-2008 and; a survey applied by telephone in 2008 (55 Mexican agro industry SME-s).

Synthesis and Reactions of Sulphone Hydrazides

The chemistry of sulphone hydrazide has gained increase interest in both synthetic organic chemistry and biological fields and has considerable value. The therapeutic importance of these compounds is the attractive force to continue research in such a point. The present review covers the literature up to date for the synthesis, reactions and applications of such compounds.

Optimization of Unweighted Minimum Vertex Cover

The Minimum Vertex Cover (MVC) problem is a classic graph optimization NP - complete problem. In this paper a competent algorithm, called Vertex Support Algorithm (VSA), is designed to find the smallest vertex cover of a graph. The VSA is tested on a large number of random graphs and DIMACS benchmark graphs. Comparative study of this algorithm with the other existing methods has been carried out. Extensive simulation results show that the VSA can yield better solutions than other existing algorithms found in the literature for solving the minimum vertex cover problem.

Flexible Wormhole-Switched Network-on-chip with Two-Level Priority Data Delivery Service

A synchronous network-on-chip using wormhole packet switching and supporting guaranteed-completion best-effort with low-priority (LP) and high-priority (HP) wormhole packet delivery service is presented in this paper. Both our proposed LP and HP message services deliver a good quality of service in term of lossless packet completion and in-order message data delivery. However, the LP message service does not guarantee minimal completion bound. The HP packets will absolutely use 100% bandwidth of their reserved links if the HP packets are injected from the source node with maximum injection. Hence, the service are suitable for small size messages (less than hundred bytes). Otherwise the other HP and LP messages, which require also the links, will experience relatively high latency depending on the size of the HP message. The LP packets are routed using a minimal adaptive routing, while the HP packets are routed using a non-minimal adaptive routing algorithm. Therefore, an additional 3-bit field, identifying the packet type, is introduced in their packet headers to classify and to determine the type of service committed to the packet. Our NoC prototypes have been also synthesized using a 180-nm CMOS standard-cell technology to evaluate the cost of implementing the combination of both services.

Towards Cloud Computing Anatomy

Cloud Computing has recently emerged as a compelling paradigm for managing and delivering services over the internet. The rise of Cloud Computing is rapidly changing the landscape of information technology, and ultimately turning the longheld promise of utility computing into a reality. As the development of Cloud Computing paradigm is speedily progressing, concepts, and terminologies are becoming imprecise and ambiguous, as well as different technologies are interfering. Thus, it becomes crucial to clarify the key concepts and definitions. In this paper, we present the anatomy of Cloud Computing, covering its essential concepts, prominent characteristics, its affects, architectural design and key technologies. We differentiate various service and deployment models. Also, significant challenges and risks need are tackled in order to guarantee the long-term success of Cloud Computing. The aim of this paper is to provide a better understanding of the anatomy of Cloud Computing and pave the way for further research in this area.

Development of Transmission Line Sleeve Inspection Robot

The line sleeves on power transmission line connects two conductors while the transmission line is constructing. However, the line sleeves sometimes cause transmission line break down, because the line sleeves are deteriorated and decayed by acid rain. When the transmission line is broken, the economical loss is huge. Therefore the line sleeves on power transmission lines should be inspected periodically to prevent power failure. In this paper, Korea Electric Power Research Institute reviewed several robots to inspect line status and proposes a robot to inspect line sleeve by measuring magnetic field on line sleeve. The developed inspection tool can reliable to move along transmission line and overcome several obstacles on transmission line. The developed system is also applied on power transmission line and verified the efficiency of the robot.

Numerical Simulation of Tidal Currents in Persian Gulf

In this paper, a two-dimensional (2D) numerical model for the tidal currents simulation in Persian Gulf is presented. The model is based on the depth averaged equations of shallow water which consider hydrostatic pressure distribution. The continuity equation and two momentum equations including the effects of bed friction, the Coriolis effects and wind stress have been solved. To integrate the 2D equations, the Alternative Direction Implicit (ADI) technique has been used. The base of equations discritization was finite volume method applied on rectangular mesh. To evaluate the model validation, a dam break case study including analytical solution is selected and the comparison is done. After that, the capability of the model in simulation of tidal current in a real field is represented by modeling the current behavior in Persian Gulf. The tidal fluctuations in Hormuz Strait have caused the tidal currents in the area of study. Therefore, the water surface oscillations data at Hengam Island on Hormoz Strait are used as the model input data. The check point of the model is measured water surface elevations at Assaluye port. The comparison between the results and the acceptable agreement of them showed the model ability for modeling marine hydrodynamic.

Patterned Growth of ZnO Nanowire Arrays on Zinc Foil by Thermal Oxidation

A simple approach is demonstrated for growing large scale, nearly vertically aligned ZnO nanowire arrays by thermal oxidation method. To reveal effect of temperature on growth and physical properties of the ZnO nanowires, gold coated zinc substrates were annealed at 300 °C and 400 °C for 4 hours duration in air. Xray diffraction patterns of annealed samples indicated a set of well defined diffraction peaks, indexed to the wurtzite hexagonal phase of ZnO. The scanning electron microscopy studies show formation of ZnO nanowires having length of several microns and average of diameter less than 500 nm. It is found that the areal density of wires is relatively higher, when the annealing is carried out at higher temperature i.e. at 400°C. From the field emission studies, the values of the turn-on and threshold field, required to draw emission current density of 10 μA/cm2 and 100 μA/cm2 are observed to be 1.2 V/μm and 1.7 V/μm for the samples annealed at 300 °C and 2.9 V/μm and 3.7 V/μm for that annealed at 400 °C, respectively. The field emission current stability, investigated over duration of more than 2 hours at the preset value of 1 μA, is found to be fairly good in both cases. The simplicity of the synthesis route coupled with the promising field emission properties offer unprecedented advantage for the use of ZnO field emitters for high current density applications.

A Numerical Strategy to Design Maneuverable Micro-Biomedical Swimming Robots Based on Biomimetic Flagellar Propulsion

Medical applications are among the most impactful areas of microrobotics. The ultimate goal of medical microrobots is to reach currently inaccessible areas of the human body and carry out a host of complex operations such as minimally invasive surgery (MIS), highly localized drug delivery, and screening for diseases at their very early stages. Miniature, safe and efficient propulsion systems hold the key to maturing this technology but they pose significant challenges. A new type of propulsion developed recently, uses multi-flagella architecture inspired by the motility mechanism of prokaryotic microorganisms. There is a lack of efficient methods for designing this type of propulsion system. The goal of this paper is to overcome the lack and this way, a numerical strategy is proposed to design multi-flagella propulsion systems. The strategy is based on the implementation of the regularized stokeslet and rotlet theory, RFT theory and new approach of “local corrected velocity". The effects of shape parameters and angular velocities of each flagellum on overall flow field and on the robot net forces and moments are considered. Then a multi-layer perceptron artificial neural network is designed and employed to adjust the angular velocities of the motors for propulsion control. The proposed method applied successfully on a sample configuration and useful demonstrative results is obtained.

Simulation of Organic Matter Variability on a Sugarbeet Field Using the Computer Based Geostatistical Methods

Computer based geostatistical methods can offer effective data analysis possibilities for agricultural areas by using vectorial data and their objective informations. These methods will help to detect the spatial changes on different locations of the large agricultural lands, which will lead to effective fertilization for optimal yield with reduced environmental pollution. In this study, topsoil (0-20 cm) and subsoil (20-40 cm) samples were taken from a sugar beet field by 20 x 20 m grids. Plant samples were also collected from the same plots. Some physical and chemical analyses for these samples were made by routine methods. According to derived variation coefficients, topsoil organic matter (OM) distribution was more than subsoil OM distribution. The highest C.V. value of 17.79% was found for topsoil OM. The data were analyzed comparatively according to kriging methods which are also used widely in geostatistic. Several interpolation methods (Ordinary,Simple and Universal) and semivariogram models (Spherical, Exponential and Gaussian) were tested in order to choose the suitable methods. Average standard deviations of values estimated by simple kriging interpolation method were less than average standard deviations (topsoil OM ± 0.48, N ± 0.37, subsoil OM ± 0.18) of measured values. The most suitable interpolation method was simple kriging method and exponantial semivariogram model for topsoil, whereas the best optimal interpolation method was simple kriging method and spherical semivariogram model for subsoil. The results also showed that these computer based geostatistical methods should be tested and calibrated for different experimental conditions and semivariogram models.

A Medical Images Based Retrieval System using Soft Computing Techniques

Content-Based Image Retrieval (CBIR) has been one on the most vivid research areas in the field of computer vision over the last 10 years. Many programs and tools have been developed to formulate and execute queries based on the visual or audio content and to help browsing large multimedia repositories. Still, no general breakthrough has been achieved with respect to large varied databases with documents of difering sorts and with varying characteristics. Answers to many questions with respect to speed, semantic descriptors or objective image interpretations are still unanswered. In the medical field, images, and especially digital images, are produced in ever increasing quantities and used for diagnostics and therapy. In several articles, content based access to medical images for supporting clinical decision making has been proposed that would ease the management of clinical data and scenarios for the integration of content-based access methods into Picture Archiving and Communication Systems (PACS) have been created. This paper gives an overview of soft computing techniques. New research directions are being defined that can prove to be useful. Still, there are very few systems that seem to be used in clinical practice. It needs to be stated as well that the goal is not, in general, to replace text based retrieval methods as they exist at the moment.

Dynamic Fuzzy-Neural Network Controller for Induction Motor Drive

In this paper, a novel approach for robust trajectory tracking of induction motor drive is presented. By combining variable structure systems theory with fuzzy logic concept and neural network techniques, a new algorithm is developed. Fuzzy logic was used for the adaptation of the learning algorithm to improve the robustness of learning and operating of the neural network. The developed control algorithm is robust to parameter variations and external influences. It also assures precise trajectory tracking with the prescribed dynamics. The algorithm was verified by simulation and the results obtained demonstrate the effectiveness of the designed controller of induction motor drives which considered as highly non linear dynamic complex systems and variable characteristics over the operating conditions.

Design of a Fuzzy Feed-forward Controller for Monitor HAGC System of Cold Rolling Mill

In this study we propose a novel monitor hydraulic automatic gauge control (HAGC) system based on fuzzy feedforward controller. This is used in the development of cold rolling mill automation system to improve the quality of cold strip. According to features/ properties of entry steel strip like its average yield stress, width of strip, and desired exit thickness, this controller realizes the compensation for the exit thickness error. The traditional methods of adjusting the roller position, can-t tolerate the variance in the entry steel strip. The proposed method uses a mathematical model of the system together with the expert knowledge to perform this adjustment while minimizing the effect of the stated problem. In order to improve the speed of the controller in rejecting disturbances introduced by entry strip thickness variations, expert knowledge is added as a feed-forward term to the HAGC system. Simulation results for the application of the proposed controller to a real cold mill show that the exit strip quality is highly improved.

Influence of Drought on Yield and Yield Components in White Bean

In order to study seed yield and seed yield components in bean under reduced irrigation condition and assessment drought tolerance of genotypes, 15 lines of White beans were evaluated in two separate RCB design with 3 replications under stress and non stress conditions. Analysis of variance showed that there were significant differences among varieties in terms of traits under study, indicating the existence of genetic variation among varieties. The results indicate that drought stress reduced seed yield, number of seed per plant, biological yield and number of pod in White been. In non stress condition, yield was highly correlated with the biological yield, whereas in stress condition it was highly correlated with harvest index. Results of stepwise regression showed that, selection can we done based on, biological yield, harvest index, number of seed per pod, seed length, 100 seed weight. Result of path analysis showed that the highest direct effect, being positive, was related to biological yield in non stress and to harvest index in stress conditions. Factor analysis were accomplished in stress and nonstress condition a, there were 4 factors that explained more than 76 percent of total variations. We used several selection indices such as Stress Susceptibility Index ( SSI ), Geometric Mean Productivity ( GMP ), Mean Productivity ( MP ), Stress Tolerance Index ( STI ) and Tolerance Index ( TOL ) to study drought tolerance of genotypes, we found that the best Stress Index for selection tolerance genotypes were STI, GMP and MP were the greatest correlations between these Indices and seed yield under stress and non stress conditions. In classification of genotypes base on phenotypic characteristics, using cluster analysis ( UPGMA ), all allels classified in 5 separate groups in stress and non stress conditions.