A Numerical Description of a Fibre Reinforced Concrete Using a Genetic Algorithm

This work reports about an approach for an automatic adaptation of concrete formulations based on genetic algorithms (GA) to optimize a wide range of different fit-functions. In order to achieve the goal, a method was developed which provides a numerical description of a fibre reinforced concrete (FRC) mixture regarding the production technology and the property spectrum of the concrete. In a first step, the FRC mixture with seven fixed components was characterized by varying amounts of the components. For that purpose, ten concrete mixtures were prepared and tested. The testing procedure comprised flow spread, compressive and bending tensile strength. The analysis and approximation of the determined data was carried out by GAs. The aim was to obtain a closed mathematical expression which best describes the given seven-point cloud of FRC by applying a Gene Expression Programming with Free Coefficients (GEP-FC) strategy. The seven-parametric FRC-mixtures model which is generated according to this method correlated well with the measured data. The developed procedure can be used for concrete mixtures finding closed mathematical expressions, which are based on the measured data.

Presentation of a Mix Algorithm for Estimating the Battery State of Charge Using Kalman Filter and Neural Networks

Determination of state of charge (SOC) in today’s world becomes an increasingly important issue in all the applications that include a battery. In fact, estimation of the SOC is a fundamental need for the battery, which is the most important energy storage in Hybrid Electric Vehicles (HEVs), smart grid systems, drones, UPS and so on. Regarding those applications, the SOC estimation algorithm is expected to be precise and easy to implement. This paper presents an online method for the estimation of the SOC of Valve-Regulated Lead Acid (VRLA) batteries. The proposed method uses the well-known Kalman Filter (KF), and Neural Networks (NNs) and all of the simulations have been done with MATLAB software. The NN is trained offline using the data collected from the battery discharging process. A generic cell model is used, and the underlying dynamic behavior of the model has used two capacitors (bulk and surface) and three resistors (terminal, surface, and end), where the SOC determined from the voltage represents the bulk capacitor. The aim of this work is to compare the performance of conventional integration-based SOC estimation methods with a mixed algorithm. Moreover, by containing the effect of temperature, the final result becomes more accurate. 

A Location-Allocation-Routing Model for a Home Health Care Supply Chain Problem

With increasing life expectancy in developed countries, the role of home care services is highlighted by both academia and industrial contributors in Home Health Care Supply Chain (HHCSC) companies. The main decisions in such supply chain systems are the location of pharmacies, the allocation of patients to these pharmacies and also the routing and scheduling decisions of nurses to visit their patients. In this study, for the first time, an integrated model is proposed to consist of all preliminary and necessary decisions in these companies, namely, location-allocation-routing model. This model is a type of NP-hard one. Therefore, an Imperialist Competitive Algorithm (ICA) is utilized to solve the model, especially in large sizes. Results confirm the efficiency of the developed model for HHCSC companies as well as the performance of employed ICA.

Nondestructive Electrochemical Testing Method for Prestressed Concrete Structures

Prestressed concrete is used a lot in infrastructures such as roads or bridges. However, poor grout filling and PC steel corrosion are currently major issues of prestressed concrete structures. One of the problems with nondestructive corrosion detection of PC steel is a plastic pipe which covers PC steel. The insulative property of pipe makes a nondestructive diagnosis difficult; therefore a practical technology to detect these defects is necessary for the maintenance of infrastructures. The goal of the research is a development of an electrochemical technique which enables to detect internal defects from the surface of prestressed concrete nondestructively. Ideally, the measurements should be conducted from the surface of structural members to diagnose non-destructively. In the present experiment, a prestressed concrete member is simplified as a layered specimen to simulate a current path between an input and an output electrode on a member surface. The specimens which are layered by mortar and the prestressed concrete constitution materials (steel, polyethylene, stainless steel, or galvanized steel plates) were provided to the alternating current impedance measurement. The magnitude of an applied electric field was 0.01-volt or 1-volt, and the frequency range was from 106 Hz to 10-2 Hz. The frequency spectrums of impedance, which relate to charge reactions activated by an electric field, were measured to clarify the effects of the material configurations or the properties. In the civil engineering field, the Nyquist diagram is popular to analyze impedance and it is a good way to grasp electric relaxation using a shape of the plot. However, it is slightly not suitable to figure out an influence of a measurement frequency which is reciprocal of reaction time. Hence, Bode diagram is also applied to describe charge reactions in the present paper. From the experiment results, the alternating current impedance method looks to be applicable to the insulative material measurement and eventually prestressed concrete diagnosis. At the same time, the frequency spectrums of impedance show the difference of the material configuration. This is because the charge mobility reflects the variety of substances and also the measuring frequency of the electric field determines migration length of charges which are under the influence of the electric field. However, it could not distinguish the differences of the material thickness and is inferred the difficulties of prestressed concrete diagnosis to identify the amount of an air void or a layer of corrosion product by the technique.

Domain Knowledge Representation through Multiple Sub Ontologies: An Application Interoperability

The issues that limit application interoperability is lack of common vocabulary, common structure, application domain knowledge ontology based semantic technology provides solutions that resolves application interoperability issues. Ontology is broadly used in diverse applications such as artificial intelligence, bioinformatics, biomedical, information integration, etc. Ontology can be used to interpret the knowledge of various domains. To reuse, enrich the available ontologies and reduce the duplication of ontologies of the same domain, there is a strong need to integrate the ontologies of the particular domain. The integrated ontology gives complete knowledge about the domain by sharing this comprehensive domain ontology among the groups. As per the literature survey there is no well-defined methodology to represent knowledge of a whole domain. The current research addresses a systematic methodology for knowledge representation using multiple sub-ontologies at different levels that addresses application interoperability and enables semantic information retrieval. The current method represents complete knowledge of a domain by importing concepts from multiple sub ontologies of same and relative domains that reduces ontology duplication, rework, implementation cost through ontology reusability.

Numerical Solution of Steady Magnetohydrodynamic Boundary Layer Flow Due to Gyrotactic Microorganism for Williamson Nanofluid over Stretched Surface in the Presence of Exponential Internal Heat Generation

This paper focuses on the study of two dimensional magnetohydrodynamic (MHD) steady incompressible viscous Williamson nanofluid with exponential internal heat generation containing gyrotactic microorganism over a stretching sheet. The governing equations and auxiliary conditions are reduced to a set of non-linear coupled differential equations with the appropriate boundary conditions using similarity transformation. The transformed equations are solved numerically through spectral relaxation method. The influences of various parameters such as Williamson parameter γ, power constant λ, Prandtl number Pr, magnetic field parameter M, Peclet number Pe, Lewis number Le, Bioconvection Lewis number Lb, Brownian motion parameter Nb, thermophoresis parameter Nt, and bioconvection constant σ are studied to obtain the momentum, heat, mass and microorganism distributions. Moment, heat, mass and gyrotactic microorganism profiles are explored through graphs and tables. We computed the heat transfer rate, mass flux rate and the density number of the motile microorganism near the surface. Our numerical results are in better agreement in comparison with existing calculations. The Residual error of our obtained solutions is determined in order to see the convergence rate against iteration. Faster convergence is achieved when internal heat generation is absent. The effect of magnetic parameter M decreases the momentum boundary layer thickness but increases the thermal boundary layer thickness. It is apparent that bioconvection Lewis number and bioconvection parameter has a pronounced effect on microorganism boundary. Increasing brownian motion parameter and Lewis number decreases the thermal boundary layer. Furthermore, magnetic field parameter and thermophoresis parameter has an induced effect on concentration profiles.

The Effect of Temperature and Salinity on the Growth and Carotenogenesis of Three Dunaliella Species (Dunaliella sp. Lake Isolate, D. salina CCAP 19/18, and D. bardawil LB 2538) Cultivated under Laboratory Conditions

In this study, 3 species of Dunaliella (Dunaliella sp. Salt Lake isoalte (Tuz Gölü), Dunaliella salina CCAP19/18, and Dunaliella bardawil LB 2538) and their optical density, dry matter, chlorophyll a, total carotenoids, and β-carotene production were investigated in a batch system. The aim of this research was to compare carotenoids, and β-carotene production were investigated in a batch those 3 species. Therefore 2 stress factors were used: 2 different temperatures (20°C and 30°C) and 2 different salinities (30‰, and 60‰) were tested over a 17-day study. The highest growth and chlorophyll a was reported for Dunaliella sp. under 20°C/30‰ and 20°C/60‰ conditions respectively followed by D. bardawil and D. salina. Significant differences were noticed (p

The Grinding Influence on the Strength of Fan-Out Wafer-Level Packages

To build a thin fan-out wafer-level package, the package had to be ground to a thin level. In this work, the influence of the grinding processes on the strength of the fan-out wafer-level packages was investigated. After different grinding processes, all specimens were placed on a three-point-bending fixture installed on a universal tester for three-point-bending testing, and the strength of the fan-out wafer-level packages was measured. The experiments revealed that the average flexure strength increased with the decreasing surface roughness height of the fan-out wafer-level package tested. The grinding processes had a significant influence on the strength of the fan-out wafer-level packages investigated.

A Multi-Science Study of Modern Synergetic War and Its Information Security Component

From a multi-science point of view, we analyze threats to security resulting from globalization of international information space and information and communication aggression of Russia. A definition of Ruschism is formulated as an ideology supporting aggressive actions of modern Russia against the Euro-Atlantic community. Stages of the hybrid war Russia is leading against Ukraine are described, including the elements of subversive activity of the special services, the activation of the military phase and the gradual shift of the focus of confrontation to the realm of information and communication technologies. We reveal an emergence of a threat for democratic states resulting from the destabilizing impact of a target state’s mass media and social networks being exploited by Russian secret services under freedom-of-speech disguise. Thus, we underline the vulnerability of cyber- and information security of the network society in regard of hybrid war. We propose to define the latter a synergetic war. Our analysis is supported with a long-term qualitative monitoring of representation of top state officials on popular TV channels and Facebook. From the memetics point of view, we have detected a destructive psycho-information technology used by the Kremlin, a kind of information catastrophe, the essence of which is explained in detail. In the conclusion, a comprehensive plan for information protection of the public consciousness and mentality of Euro-Atlantic citizens from the aggression of the enemy is proposed.

Assessment of Physicochemical Characteristics and Heavy Metals Concentration in Freshwater from Jega River, Kebbi State, Nigeria

This study was conducted to determine the physicochemical characteristics and heavy metal concentration (Cadmium (Cd), Copper (Cu), Iron (Fe), Lead (Pb) and Zinc (Zn)) in freshwater from Jega river. 30 water samples were collected in two 1-liter sterile plastic containers from three designated sampling points, namely; Station A (before the bridge; upstream), Station B (at the bridge where human activities such as washing of cars, motorbike, clothes, bathing and other household materials are concentrated), Station C (after the bridge; downstream) fortnightly, between March and July 2014. Results indicated that the highest pH mean value of 7.08 ± 1.12 was observed in station C, the highest conductivity with the mean 58.75 ± 7.87 µs/cm was observed at station A, the highest mean value of the water total hardness was observed at station A (54 ± 16.11 mg/L), the highest mean value of nitrate deposit was observed in station A (1.66 ± 1.33 mg/L), the highest mean value of alkalinity was observed at station B (51.33 ± 6.66 mg/L) and the highest mean (39.56 ± 3.24 mg/L) of total dissolved solids was observed at station A. The highest concentration mean value of Fe was observed in station C (65.33 ± 4.50 mg/L), the highest concentrations of Cd was observed in station C (0.99 ± 0.36 mg/L), the mean value of 2.13 ± 1.99 mg/L was the highest concentration of Zn observed in station B, the concentration of Pb was not detected (ND) and the highest concentration of Cu with the mean value of 0.43 ± 0.16 mg/L was observed in station B, while the lowest concentration was observed at station C (0.27 ± 0.26 mg/L). Statistical analysis shows no significant difference (P > 0.05) among the sampling stations for both the physicochemical characteristics and heavy metal concentrations. The results were found to be within the internationally acceptable standard limits.

Intelligent Process and Model Applied for E-Learning Systems

E-learning is a developing area especially in education. E-learning can provide several benefits to learners. An intelligent system to collect all components satisfying user preferences is so important. This research presents an approach that it capable to personalize e-information and give the user their needs following their preferences. This proposal can make some knowledge after more evaluations made by the user. In addition, it can learn from the habit from the user. Finally, we show a walk-through to prove how intelligent process work.

Socio-Technical Systems: Transforming Theory into Practice

This paper critically examines the evolution of socio-technical systems theory, its practices, and challenges in system design and development. It examines concepts put forward by researchers focusing on the application of the theory in software engineering. There are various methods developed that use socio-technical concepts based on systems engineering without remarkable success. The main constraint is the large amount of data and inefficient techniques used in the application of the concepts in system engineering for developing time-bound systems and within a limited/controlled budget. This paper critically examines each of the methods, highlight bottlenecks and suggest the way forward. Since socio-technical systems theory only explains what to do, but not how doing it, hence engineers are not using the concept to save time, costs and reduce risks associated with new frameworks. Hence, a new framework, which can be considered as a practical approach is proposed that borrows concepts from soft systems method, agile systems development and object-oriented analysis and design to bridge the gap between theory and practice. The approach will enable the development of systems using socio-technical systems theory to attract/enable the system engineers/software developers to use socio-technical systems theory in building worthwhile information systems to avoid fragilities and hostilities in the work environment.

A Fundamental Study for Real-Time Safety Evaluation System of Landing Pier Using FBG Sensor

A landing pier is subjected to safety assessment by visual inspection and design data, but it is difficult to check the damage in real-time. In this study, real - time damage detection and safety evaluation methods were studied. As a result of structural analysis of the arbitrary landing pier structure, the inflection point of deformation and moment occurred at 10%, 50%, and 90% of pile length. The critical value of Fiber Bragg Grating (FBG) sensor was set according to the safety factor, and the FBG sensor application method for real - time safety evaluation was derived.

Numerical Analysis of the Effect of Geocell Reinforcement above Buried Pipes on Surface Settlement and Vertical Pressure

Dynamic traffic loads cause deformation of underground pipes, resulting in vehicle discomfort. This makes it necessary to reinforce the layers of soil above underground pipes. In this study, the subbase layer was reinforced. Finite element software (PLAXIS 3D) was used to in the simulation, which includes geocell reinforcement, vehicle loading, soil layers and Glass Fiber Reinforced Plastic (GRP) pipe. Geocell reinforcement was modeled using a geogrid element, which was defined as a slender structure element that has the ability to withstand axial stresses but not to resist bending. Geogrids cannot withstand compression but they can withstand tensile forces. Comparisons have been made between the numerical models and experimental works, and a good agreement was obtained. Using the mathematical model, the performance of three different pipes of diameter 600 mm, 800 mm, and 1000 mm, and three different vehicular speeds of 20 km/h, 40 km/h, and 60 km/h, was examined to determine their impact on surface settlement and vertical pressure at the pipe crown for two cases: with and without geocell reinforcement. The results showed that, for a pipe diameter of 600 mm under geocell reinforcement, surface settlement decreases by 94 % when the speed of the vehicle is 20 km/h and by 98% when the speed of the vehicle is 60 km/h. Vertical pressure decreases by 81 % when the diameter of the pipe is 600 mm, while the value decreases to 58 % for a pipe with diameter 1000 mm. The results show that geocell reinforcement causes a significant and positive reduction in surface settlement and vertical stress above the pipe crown, leading to an increase in pipe safety.

Humans as Enrichment: Human-Animal Interactions and the Perceived Benefit to the Cheetah (Acinonyx jubatus), Human and Zoological Establishment

Engagement with non-human animals is a rapidly-growing field of study within the animal science and social science sectors, with human-interactions occurring in many forms; interactions, encounters and animal-assisted therapy. To our knowledge, there has been a wide array of research published on domestic and livestock human-animal interactions, however, there appear to be fewer publications relating to zoo animals and the effect these interactions have on the animal, human and establishment. The aim of this study was to identify if there were any perceivable benefits from the human-animal interaction for the cheetah, the human and the establishment. Behaviour data were collected before, during and after the interaction on the behaviour of the cheetah and the human participants to highlight any trends with nine interactions conducted. All 35 participants were asked to fill in a questionnaire prior to the interaction and immediately after to ascertain if their perceptions changed following an interaction with the cheetah. An online questionnaire was also distributed for three months to gain an understanding of the perceptions of human-animal interactions from members of the public, gaining 229 responses. Both questionnaires contained qualitative and quantitative questions to allow for specific definitive answers to be analysed, but also expansion on the participants perceived perception of human-animal interactions. In conclusion, it was found that participants’ perceptions of human-animal interactions saw a positive change, with 64% of participants altering their opinion and viewing the interaction as beneficial for the cheetah (reduction in stress assumed behaviours) following participation in a 15-minute interaction. However, it was noted that many participants felt the interaction lacked educational values and therefore this is an area in which zoological establishments can work to further improve upon. The results highlighted many positive benefits for the human, animal and establishment, however, the study does indicate further areas for research in order to promote positive perceptions of human-animal interactions and to further increase the welfare of the animal during these interactions, with recommendations to create and regulate legislation.

Corporate Cautionary Statement: A Genre of Professional Communication

Cautionary statements or disclaimers in corporate annual reports need to be carefully designed because clear cautionary statements may protect a company in the case of legal disputes and may undermine positive impressions. This study compares the language of cautionary statements using two corpora, Sony’s cautionary statement corpus (S-corpus) and Panasonic’s cautionary statement corpus (P-corpus), illustrating the differences and similarities in relation to the use of meaningful cautionary statements and critically analyzing why practitioners use the way. The findings describe the distinct differences between the two companies in the presentation of the risk factors and the way how they make the statements. The word ability is used more for legal protection in S-corpus whereas the word possibility is used more to convey a better impression in P-corpus. The main similarities are identified in the use of lexical words and pronouns, and almost the same wordings for eight years. The findings show how they make the statements unique to the company in the presentation of risk factors, and the characteristics of specific genre of professional communication. Important implications of this study are that more comprehensive approach can be applied in other contexts, and be used by companies to reflect upon their cautionary statements.

Erosion in Abrasive Jet Nozzles: A Comprehensive Study

Abrasive jet machining is one of the promising non-traditional machining processes which uses mechanical energy (pressure and velocity) for machining various materials. The process parameters that influence the metal removal rate are kerfs, surface finish, depth of cut, air pressure, and distance between nozzle and work piece, nozzle diameter, abrasive type, abrasive shape, and mass flow rate of abrasive particles. The abrasive particles coming out with high pressure not only hits work surface but also passes through the nozzle resulting in erosion. This paper focuses mainly on the effect of different parameters on the erosion of nozzle in Abrasive jet machining. Three different types of nozzles made of sapphire, tungsten carbide, and high carbon high chromium steel (HCHCS) are used for machining glass and the erosion of these nozzles are calculated. The results are shown in tabular form and graphical representation.

Emulation of a Wind Turbine Using Induction Motor Driven by Field Oriented Control

This paper concerns with the modeling, simulation, and emulation of a wind turbine emulator for standalone wind energy conversion systems. By using emulation system, we aim to reproduce the dynamic behavior of the wind turbine torque on the generator shaft: it provides the testing facilities to optimize generator control strategies in a controlled environment, without reliance on natural resources. The aerodynamic, mechanical, electrical models have been detailed as well as the control of pitch angle using Fuzzy Logic for horizontal axis wind turbines. The wind turbine emulator consists mainly of an induction motor with AC power drive with torque control. The control of the induction motor and the mathematical models of the wind turbine are designed with MATLAB/Simulink environment. The simulation results confirm the effectiveness of the induction motor control system and the functionality of the wind turbine emulator for providing all necessary parameters of the wind turbine system such as wind speed, output torque, power coefficient and tip speed ratio. The findings are of direct practical relevance.

Free Vibration Analysis of Functionally Graded Pretwisted Plate in Thermal Environment Using Finite Element Method

The free vibration behavior of thick pretwisted cantilevered functionally graded material (FGM) plate subjected to the thermal environment is investigated numerically in the present paper. A mathematical model is developed in the framework of higher order shear deformation theory (HOST) with C0 finite element formulation i.e. independent displacement and rotations. The material properties are assumed to be temperature dependent and vary continuously through the thickness based on the volume fraction exponent in simple power rule. The finite element model has been discretized into eight node quadratic serendipity elements with node wise seven degrees of freedom. The effect of plate geometry, temperature field, material composition, and the modal analysis on the vibrational characteristics is examined. Finally, the results are verified by comparing with those available in literature.

Spacial Poetic Text throughout Samih al-Qasim's Poetry

For readers, space/place is one of the most significant references to reveal deep significances and indications in modern Arabic poetic texts. Generally, when poets evoke places and/or spaces, they do not mean to refer readers to detailed geographic or physical spaces, but to the symbolic significances and dimensions that those spaces have and through which poets encourage spacial awareness in their readers. Recently, as a result, there has been a great deal of interest in research addressing spacial poetic texts and dimensions in modern Arabic poetry in general and in Palestinian poetry in particular. Samih al-Qasim is one of the most recent prominent Palestinian revolutionary poets. Al-Qasim has published six series of poems that are well known in the Arab world. Although several researchers have studied al-Qasim's poetry, to our knowledge, yet no one has studied the aspect of spacial poetic text in his poetry. Therefore, this paper seeks to fill a gap in the scholarship that has not been addressed up to now. This article aims, not only to demonstrate the presence of spacial poetic text and dimensions throughout al-Qasim's poetry, but also to investigate the purpose for which the poet uses spacial poetic text. Our theory is that the poet, consciously and significantly, uses spacial poetic texts to magnify the Palestinian identity of the Palestinian readers.  Methodologically, we applied a descriptive analytic method, referencing al-Qasim's poetry, addressing spacial poetic texts practically but not theoretically or statistically.