Safety Study of Intravenously Administered Human Cord Blood Stem Cells in the Treatment of Symptoms Related to Chronic Inflammation

Numerous investigations suggest that Mesenchymal Stem Cells (MSCs) in general represent a valuable tool for therapy of symptoms related to chronic inflammatory diseases. Blue Horizon Stem Cell Therapy Program is a leading provider of adult and children’s stem cell therapies. Uniquely we have safely and efficiently treated more than 600 patients with documenting each procedure. The purpose of our study is primarily to monitor the immune response in order to validate the safety of intravenous infusion of human umbilical cord blood derived MSCs (UC-MSCs), and secondly, to evaluate effects on biomarkers associated with chronic inflammation. Nine patients were treated for conditions associated with chronic inflammation and for the purpose of antiaging. They have been given one intravenous infusion of UCMSCs. Our study of blood test markers of 9 patients with chronic inflammation before and within three months after MSCs treatment demonstrates that there is no significant changes and MSCs treatment was safe for the patients. Analysis of different indicators of chronic inflammation and aging included in initial, 24-hours, two weeks and three months protocols showed that stem cell treatment was safe for the patients; there were no adverse reactions. Moreover data from follow up protocols demonstrates significant improvement in energy level, hair, nails growth and skin conditions. Intravenously administered UC-MSCs were safe and effective in the improvement of symptoms related to chronic inflammation. Further close monitoring and inclusion of more patients are necessary to fully characterize the advantages of UC-MSCs application in treatment of symptoms related to chronic inflammation.

Clinical Parameters Response to Low-Level Laser versus Monochromatic Near-Infrared Photo Energy in Diabetic Patients with Peripheral Neuropathy

Background: Diabetic sensorimotor polyneuropathy (DSP) is one of the most common microvascular complications of type 2 diabetes. Loss of sensation is thought to contribute to a lack of static and dynamic stability and increased risk of falling. Purpose: The purpose of this study was to compare the effects of low-level laser (LLL) and monochromatic near-infrared photo energy (MIRE) on pain, cutaneous sensation, static stability, and index of lower limb blood flow in diabetic patients with peripheral neuropathy. Methods: Forty diabetic patients with peripheral neuropathy were recruited for participation in this study. They were divided into two groups: The MIRE group, which contained 20 patients, and the LLL group, which contained 20 patients. All patients who participated in the study had been subjected to various physical assessment procedures, including pain, cutaneous sensation, Doppler flow meter, and static stability assessments. The baseline measurements were followed by treatment sessions that were conducted twice a week for six successive weeks. Results: The statistical analysis of the data revealed significant improvement of pain in both groups, with significant improvement in cutaneous sensation and static balance in the MIRE group compared to the LLL group; on the other hand, the results showed no significant differences in lower limb blood flow between the groups. Conclusion: LLL and MIRE can improve painful symptoms in patients with diabetic neuropathy. On the other hand, MIRE is also useful in improving cutaneous sensation and static stability in patients with diabetic neuropathy.

Scanning Electronic Microscopy for Analysis of the Effects of Surfactants on De-Wrinkling and Dispersion of Graphene

Graphene was dispersed using a tip sonicator and the effect of surfactants were analysed. Sodium Dodecyl Sulphate (SDS) and Polyvinyl Alcohol (PVA) were compared to observe whether or not they had any effect on any de-wrinkling, and secondly whether they aided to achieve better dispersions. There is a huge demand for wrinkle free graphene as this will greatly increase its usefulness in various engineering applications. A comprehensive literature on dewrinkling graphene has been discussed. Low magnification Scanning Electronic Microscopy (SEM) was conducted to assess the quality of graphene de-wrinkling. The utilization of the PVA has significant effect on de-wrinkling whereas SDS had minimal effect on the dewrinkling of graphene.

Relation between Properties of Internally Cured Concrete and Water Cement Ratio

In this paper, relationship between different properties of IC concrete and water cement ratio, obtained from a comprehensive experiment conducted on IC using local materials (Burnt clay chips- BC) is presented. In addition, saturated SAP was used as an IC material in some cases. Relationships have been developed through regression analysis. The focus of this analysis is on developing relationship between a dependent variable and an independent variable. Different percent replacements of BC and water cement ratios were used. Compressive strength, modulus of elasticity, water permeability and chloride permeability were tested and variations of these parameters were analyzed with respect to water cement ratio.

Clinical Comparative Study Comparing Efficacy of Intrathecal Fentanyl and Magnesium as an Adjuvant to Hyperbaric Bupivacaine in Mild Pre-Eclamptic Patients Undergoing Caesarean Section

Adequate analgesia following caesarean section decreases morbidity, hastens ambulation, improves patient outcome and facilitates care of the newborn. Intrathecal magnesium, an NMDA antagonist, has been shown to prolong analgesia without significant side effects in healthy parturients. The aim of this study was to evaluate the onset and duration of sensory and motor block, hemodynamic effect, postoperative analgesia, and adverse effects of magnesium or fentanyl given intrathecally with hyperbaric 0.5% bupivacaine in patients with mild preeclampsia undergoing caesarean section. Sixty women with mild preeclampsia undergoing elective caesarean section were included in a prospective, double blind, controlled trial. Patients were randomly assigned to receive spinal anesthesia with 2 mL 0.5% hyperbaric bupivacaine with 12.5 μg fentanyl (group F) or 0.1 ml of 50% magnesium sulphate (50 mg) (group M) with 0.15ml preservative free distilled water. Onset, duration and recovery of sensory and motor block, time to maximum sensory block, duration of spinal anaesthesia and postoperative analgesic requirements were studied. Statistical comparison was carried out using the Chi-square or Fisher’s exact tests and Independent Student’s t-test where appropriate. The onset of both sensory and motor block was slower in the magnesium group. The duration of spinal anaesthesia (246 vs. 284) and motor block (186.3 vs. 210) were significantly longer in the magnesium group. Total analgesic top up requirement was less in group M. Hemodynamic parameters were similar in both the groups. Intrathecal magnesium caused minimal side effects. Since Fentanyl and other opioid congeners are not available throughout the country easily, magnesium with its easy availability and less side effect profile can be a cost effective alternative to fentanyl in managing pregnancy induced hypertension (PIH) patients given along with Bupivacaine intrathecally in caesarean section.

Removal of Aggregates of Monoclonal Antibodies by Ion Exchange Chromatography

The primary objective of this work was to study the effect of resin chemistry, pH and molarity of binding and elution buffer on aggregate removal using Cation Exchange Chromatography and find the optimum conditions which can give efficient aggregate removal with minimum loss of yield. Four different resins were used for carrying out the experiments: Fractogel EMD SO3 -(S), Fractogel EMD COO-(M), Capto SP ImpRes and S Ceramic HyperD. Runs were carried out on the AKTA Avant system. Design of Experiments (DOE) was used for analysis using the JMP software. The dependence of the yield obtained using different resins on the operating conditions was studied. Success has been achieved in obtaining yield greater than 90% using Capto SP ImpRes and Fractogel EMD COO-(M) resins. It has also been found that a change in the operating conditions generally has different effects on the yields obtained using different resins.

An Enhanced Associativity Based Routing with Fuzzy Based Trust to Mitigate Network Attacks

Mobile Ad Hoc Networks (MANETs) is a collection of mobile devices forming a communication network without infrastructure. MANET is vulnerable to security threats due to network’s limited security, dynamic topology, scalability and the lack of central management. The Quality of Service (QoS) routing in such networks is limited by network breakage caused by node mobility or nodes energy depletions. The impact of node mobility on trust establishment is considered and its use to propagate trust through a network is investigated in this paper. This work proposes an enhanced Associativity Based Routing (ABR) with Fuzzy based Trust (Fuzzy- ABR) routing protocol for MANET to improve QoS and to mitigate network attacks.

Studies on Pre-Ignition Chamber Dynamics of Solid Rockets with Different Port Geometries

In this paper numerical studies have been carried out to examine the pre-ignition flow features of high-performance solid propellant rocket motors with two different port geometries but with same propellant loading density. Numerical computations have been carried out using a validated 3D, unsteady, 2nd-order implicit, SST k- ω turbulence model. In the numerical study, a fully implicit finite volume scheme of the compressible, Reynolds-Averaged, Navier- Stokes equations is employed. We have observed from the numerical results that in solid rocket motors with highly loaded propellants having divergent port geometry the hot igniter gases can create preignition pressure oscillations leading to thrust oscillations due to the flow unsteadiness and recirculation. We have also observed that the igniter temperature fluctuations are diminished rapidly thereby reaching the steady state value faster in the case of solid propellant rocket motors with convergent port than the divergent port irrespective of the igniter total pressure. We have concluded that the prudent selection of the port geometry, without altering the propellant loading density, for damping the total temperature fluctuations within the motor is a meaningful objective for the suppression and control of instability and/or thrust oscillations often observed in solid propellant rocket motors with non-uniform port geometry.

Mechanical Behavior of Recycled Pet Fiber Reinforced Concrete Matrix

Concrete is strong in compression however weak in tension. The tensile strength as well as ductile property of concrete could be improved by addition of short dispersed fibers. Polyethylene terephthalate (PET) fiber obtained from hand cutting or mechanical slitting of plastic sheets generally used as discrete reinforcement in substitution of steel fiber. PET fiber obtained from the former process is in the form of straight slit sheet pattern that impart weaker mechanical bonding behavior in the concrete matrix. To improve the limitation of straight slit sheet fiber the present study considered two additional geometry of fiber namely (a) flattened end slit sheet and (b) deformed slit sheet. The mix for plain concrete was design for a compressive strength of 25 MPa at 28 days curing time with a watercement ratio of 0.5. Cylindrical and beam specimens with 0.5% fibers volume fraction and without fibers were cast to investigate the influence of geometry on the mechanical properties of concrete. The performance parameters mainly studied include flexural strength, splitting tensile strength, compressive strength and ultrasonic pulse velocity (UPV). Test results show that geometry of fiber has a marginal effect on the workability of concrete. However, it plays a significant role in achieving a good compressive and tensile strength of concrete. Further, significant improvement in term of flexural and energy dissipation capacity were observed from other fibers as compared to the straight slit sheet pattern. Also, the inclusion of PET fiber improved the ability in absorbing energy in the post-cracking state of the specimen as well as no significant porous structures.

Tracking Performance Evaluation of Robust Back-Stepping Control Design for a Nonlinear Electrohydraulic Servo System

Electrohydraulic servo system have been used in industry in a wide number of applications. Its dynamics are highly nonlinear and also have large extent of model uncertainties and external disturbances. In this paper, a robust back-stepping control (RBSC) scheme is proposed to overcome the problem of disturbances and system uncertainties effectively and to improve the tracking performance of EHS systems. In order to implement the proposed control scheme, the system uncertainties in EHS systems are considered as total leakage coefficient and effective oil volume. In addition, in order to obtain the virtual controls for stabilizing system, the update rule for the system uncertainty term is induced by the Lyapunov control function (LCF). To verify the performance and robustness of the proposed control system, computer simulation of the proposed control system using Matlab/Simulink Software is executed. From the computer simulation, it was found that the RBSC system produces the desired tracking performance and has robustness to the disturbances and system uncertainties of EHS systems.

Information Technology for Business Process Management in Insurance Companies

Information technology plays an irreplaceable role in introducing and improving business process orientation in a company. It enables implementation of the theoretical concept, measurement of results achieved and undertaking corrective measures aimed at improvements. Information technology is a key concept in the development and implementation of the business process management systems as it establishes a connection to business operations. Both in the literature and practice, insurance companies are often seen as highly process oriented due to the nature of their business and focus on customers. They are also considered leaders in using information technology for business process management. The research conducted aimed to investigate whether the perceived leadership status of insurance companies is well deserved, i.e. to establish the level of process orientation and explore the practice of information technology use in insurance companies in the region. The main instrument for primary data collection within this research was an electronic survey questionnaire sent to the management of insurance companies in the Republic of Croatia, Bosnia and Herzegovina, Slovenia, Serbia and Macedonia. The conducted research has shown that insurance companies have a satisfactory level of process orientation, but that there is also a huge potential for improvement, especially in the segment of information technology and its connection to business processes.

Financial Innovations for Companies Offered by Banks: Polish Experience

Financial innovations can be regarded as the cause and the effect of the evolution of the financial system. Most of financial innovations are created by various financial institutions for their own purposes and needs. However, due to their diversity, financial innovations can be also applied by various business entities (other than financial institutions). This paper focuses on the potential application of financial innovations by non-financial companies. It is assumed that financial innovations may be effectively applied in all fields of corporate financial decisions integrating financial management with the risk management process. Appropriate application of financial innovations may enhance the development of the company and increase its value by improving its financial situation and reducing the level of risk. On the other hand, misused financial innovations may become the source of extra risk for the company threatening its further operation. The main objective of the paper is to identify the major types of financial innovations offered to non-financial companies by the banking system in Poland. It also aims at identifying the main factors determining the creation of financial innovations in the banking system in Poland and indicating future directions of their development. This paper consists of conceptual and empirical part. Conceptual part based on theoretical study is focused on the determinants of the process of financial innovations and their application by the nonfinancial companies. Theoretical study is followed by the empirical research based on the analysis of the actual offer of the 20 biggest banks operating in Poland with regard to financial innovations offered to SMEs and large corporations. These innovations are classified according to the main functions of the integrated financial management, such as financing, investment, working capital management and risk management. Empirical study has proved that the biggest banks operating in the Polish market offer to their business customers many types and classes of financial innovations. This offer appears vast and adequate to the needs and purposes of the Polish non-financial companies. It was observed that financial innovations pertained to financing decisions dominate in the banks’ offer. However, due to high diversification of the offered financial innovations, business customers may effectively apply them in all fields and areas of integrated financial management. It should be underlined, that the banks’ offer is highly dispersed, which may limit the implementation of financial innovations in the corporate finance. It would be also recommended for the banks operating in the Polish market to intensify the education campaign aiming at increasing knowledge about financial innovations among business customers.

A Preliminary Study for Design of Automatic Block Reallocation Algorithm with Genetic Algorithm Method in the Land Consolidation Projects

Land reallocation is one of the most important steps in land consolidation projects. Many different models were proposed for land reallocation in the literature such as Fuzzy Logic, block priority based land reallocation and Spatial Decision Support Systems. A model including four parts is considered for automatic block reallocation with genetic algorithm method in land consolidation projects. These stages are preparing data tables for a project land, determining conditions and constraints of land reallocation, designing command steps and logical flow chart of reallocation algorithm and finally writing program codes of Genetic Algorithm respectively. In this study, we designed the first three steps of the considered model comprising four steps.

Microstructure, Mechanical, Electrical and Thermal Properties of the Al-Si-Ni Ternary Alloy

In recent years, the use of the aluminum based alloys in the industry and technology are increasing. Alloying elements in aluminum have further been improving the strength and stiffness properties that provide superior compared to other metals. In this study, investigation of physical properties (microstructure, microhardness, tensile strength, electrical conductivity and thermal properties) in the Al-12.6wt.%Si-%2wt.Ni ternary alloy were investigated. Al-Si-Ni alloy was prepared in vacuum atmosphere. The samples were directionally solidified upwards with different growth rate V (8.3−165.45 μm/s) at constant temperature gradient G (7.73 K/mm). The flake spacings (λ), microhardness (HV), ultimate tensile strength (σ), electrical resistivity (ρ) and thermal properties (H, Cp, Tm) of the samples were measured. Influence of the growth rate and spacings on microhardness, ultimate tensile strength and electrical resistivity were investigated and relationships between them were obtained. According to results, λ values decrease with increasing V, but HV, σ and ρ values increase with increasing V. Variations of electrical resistivity (ρ) of solidified samples were also measured. The enthalpy of fusion (H) and specific heat (Cp) for the alloy was also determined by differential scanning calorimeter (DSC) from heating trace during the transformation from liquid to solid. The results in this work were compared with the previous similar experimental results.

Highly Accurate Tennis Ball Throwing Machine with Intelligent Control

The paper presents an advanced control system for tennis ball throwing machines to improve their accuracy according to the ball impact points. A further advantage of the system is the much easier calibration process involving the intelligent solution of the automatic adjustment of the stroking parameters according to the ball elasticity, the self-calibration, the use of the safety margin at very flat strokes and the possibility to placing the machine to any position of the half court. The system applies mathematical methods to determine the exact ball trajectories and special approximating processes to access all points on the aimed half court.

The Selection of the Nearest Anchor Using Received Signal Strength Indication (RSSI)

The localization information is crucial for the operation of WSN. There are principally two types of localization algorithms. The Range-based localization algorithm has strict requirements on hardware, thus is expensive to be implemented in practice. The Range-free localization algorithm reduces the hardware cost. However, it can only achieve high accuracy in ideal scenarios. In this paper, we locate unknown nodes by incorporating the advantages of these two types of methods. The proposed algorithm makes the unknown nodes select the nearest anchor using the Received Signal Strength Indicator (RSSI) and choose two other anchors which are the most accurate to achieve the estimated location. Our algorithm improves the localization accuracy compared with previous algorithms, which has been demonstrated by the simulating results.

The Effect of Polypropylene Fiber in the Stabilization of Expansive Soils

Expansive soils are often encountered in many parts of the world, especially in arid and semi-arid fields. Such kind of soils, generally including active clay minerals in low water content, enlarge in volume by absorbing the water through the surface and cause a great harm to the light structures such as channel coating, roads and airports. The expansive soils were encountered on the path of Apa-Hotamış conveyance channel belonging to the State Hydraulic Works in the region of Konya. In the research done in this area, it is predicted that the soil has a swollen nature and the soil should be filled with proper granular equipments by digging the ground to 50-60 cm. In this study, for purpose of helping the other research to be done in the same area, it is thought that instead of replacing swollen soil with the granular soil, by stabilizing it with polypropylene fiber and using it its original place decreases effect of swelling percent, in this way the cost will be decreased. Therefore, laboratory tests were conducted to study the effects of polypropylene fiber on swelling characteristics of expansive soil. Test results indicated that inclusion of fiber reduced swell percent of expansive soil. As the fiber content increased, the unconfined compressive strength was increased. Finally, it can be said that stabilization of expansive soils with polypropylene fiber is an effective method.

Brazilian Constitution and the Fundamental Right to Sanitation

The right to basic sanitation, was elevated to the category of fundamental right by the Constitution of 1988 to protect the ecologically balanced environment, ensuring social rights to health and adequate housing and put the dignity of the human person as the foundation of the Brazilian Democratic State. Before their essentiality to humans, this article seeks to understand why universal access to basic sanitation is a goal so difficult to achieve in Brazil. Therefore, this research uses the deductive and analytical method. Given the nature of the research literature, research techniques were centered in specialized books on the subject, journals, theses and dissertations, laws, relevant law case and raising social indicators relating to the theme. The relevance of the topic stems, among other things, the fact that sanitation services are essential for a dignified life, i.e., everyone is entitled to the maintenance of the necessary existence conditions are satisfied. However, the effectiveness of this right is undermined in society, since Brazil has huge deficit in sanitation services, denying thus a worthy life to most of the population. Thus, it can be seen that the provision of water and sewage services in Brazil is still characterized by a large imbalance, since the municipalities with lower population index have greater disability in the sanitation service. The truth is that the precariousness of water and sewage services in Brazil is still very concentrated in the North and Northeast regions, limiting the effective implementation of the Law 11.445/2007 in the country. Therefore, there is urgent need for a positive service by the State in the provision of sanitation services in order to prevent and control disease, improve quality of life and productivity of individuals, besides preventing contamination of water resources. More than just social and economic necessity, there is a government duty to implement such services. In this sense, given the current scenario, to achieve universal access to basic sanitation imposes many hurdles. These are mainly in the field of properly formulated and implemented public policies, i.e., it requires an excellent institutional organization, management services, strategic planning, social control, in order to provide answers to complex challenges.

Pressure Relief in Prosthetic Sockets through Hole Implementation Using Different Materials

Below-knee amputees commonly experience asymmetrical gait patterns. It is generally believed that ischemia is related to the formation of pressure sores due to uneven distribution of forces. Micro-vascular responses can reveal local malnutrition. Changes in local skin blood supply under various external loading conditions have been studied for a number of years. Radionuclide clearance, photo-plethysmography, trans-cutaneous oxygen tension along with other studies showed that the blood supply would be influenced by the epidermal forces, and the rate and the amount of blood supply would decrease with increased epidermal loads being shear forces or normal forces. Several cases of socket designs were investigated using Finite Element Model (FEM) and Design of Experiment (DOE) to increase flexibility and minimize the pressure at the limb/socket interface using ultra high molecular weight polyethylene (UHMWPE) and polyamide 6 (PA6) or Duraform. The pressure reliefs at designated areas where reducing thickness is involved are seen to be critical in determination of amputees’ comfort and are very important to clinical applications. Implementing a hole between the Patellar Tendon (PT) and Distal Tibia (DT) would decrease stiffness and increase prosthesis range of motion where flexibility is needed. In addition, displacement and prosthetic energy storage increased without compromising mechanical efficiency and prosthetic design integrity.

Useful Lifetime Prediction of Chevron Rubber Spring for Railway Vehicle

Useful lifetime evaluation of chevron rubber spring was very important in design procedure to assure the safety and reliability. It is, therefore, necessary to establish a suitable criterion for the replacement period of chevron rubber spring. In this study, we performed characteristic analysis and useful lifetime prediction of chevron rubber spring. Rubber material coefficient was obtained by curve fittings of uniaxial tension equibiaxial tension and pure shear test. Computer simulation was executed to predict and evaluate the load capacity and stiffness for chevron rubber spring. In order to useful lifetime prediction of rubber material, we carried out the compression set with heat aging test in an oven at the temperature ranging from 50°C to 100°C during a period 180 days. By using the Arrhenius plot, several useful lifetime prediction equations for rubber material was proposed.