Fingerprint Image Encryption Using a 2D Chaotic Map and Elliptic Curve Cryptography

Fingerprints are suitable as long-term markers of human identity since they provide detailed and unique individual features which are difficult to alter and durable over life time. In this paper, we propose an algorithm to encrypt and decrypt fingerprint images by using a specially designed Elliptic Curve Cryptography (ECC) procedure based on block ciphers. In addition, to increase the confusing effect of fingerprint encryption, we also utilize a chaotic-behaved method called Arnold Cat Map (ACM) for a 2D scrambling of pixel locations in our method. Experimental results are carried out with various types of efficiency and security analyses. As a result, we demonstrate that the proposed fingerprint encryption/decryption algorithm is advantageous in several different aspects including efficiency, security and flexibility. In particular, using this algorithm, we achieve a margin of about 0.1% in the test of Number of Pixel Changing Rate (NPCR) values comparing to the-state-of-the-art performances.

Functions and Effects of Green Facades in the Developing Countries: Case Study of Tehran

Many people lost their life caused by environmental pollution every year. The negative effects of environmental crises appear to be much higher in Asian countries. The most important environmental issue in the developing countries and especially in Tehran, to our best knowledge, is air pollution that has affected many aspects of life in society. Environmental topics related to technology’s development have been salient issues among the main concerns of designers. Green facades are the most considerable solutions which designers and architectures are focused on, all over the world. But there are lots of behavioral and psychological problems about this point. In this line, this excavation has tried to reveal the cultural and psychological influences of green façade in developing countries like Tehran. Green façades in developing countries are so useless, although they are so expensive. As a matter of fact, users consider green facade as a decorative item. This research is an attempt to recognize the reasons which show green façades as worthless element. Also, some solutions are presented to promote green façades in the developing countries as an intrinsic solution. There are so many environmental threats, especially about air pollution, for a city as Tehran, which might be solved by green facades.

The Current Practices of Analysis of Reinforced Concrete Panels Subjected to Blast Loading

For any country in the world, it has become a priority to protect the critical infrastructure from looming risks of terrorism. In any infrastructure system, the structural elements like lower floors, exterior columns, walls etc. are key elements which are the most susceptible to damage due to blast load. The present study revisits the state of art review of the design and analysis of reinforced concrete panels subjected to blast loading. Various aspects in association with blast loading on structure, i.e. estimation of blast load, experimental works carried out previously, the numerical simulation tools, various material models, etc. are considered for exploring the current practices adopted worldwide. Discussion on various parametric studies to investigate the effect of reinforcement ratios, thickness of slab, different charge weight and standoff distance is also made. It was observed that for the simulation of blast load, CONWEP blast function or equivalent numerical equations were successfully employed by many researchers. The study of literature indicates that the researches were carried out using experimental works and numerical simulation using well known generalized finite element methods, i.e. LS-DYNA, ABAQUS, AUTODYN. Many researchers recommended to use concrete damage model to represent concrete and plastic kinematic material model to represent steel under action of blast loads for most of the numerical simulations. Most of the studies reveal that the increase reinforcement ratio, thickness of slab, standoff distance was resulted in better blast resistance performance of reinforced concrete panel. The study summarizes the various research results and appends the present state of knowledge for the structures exposed to blast loading.

Evaluating Accessibility to Bangkok Mass Transit System: Case Study of Saphan Taksin BTS Station

Access to the mass transit system, including rapid elevated and underground transport has become an outstanding issue for many cities. The mass transit access development should focus on behavioral responses of the different passenger groups. Moreover, it should consider about the appearance of intent-oriented action related accessibility that was explored from user’s satisfaction and attitudes related to services quality. This study aims to evaluate mass transit accessibility from passenger’s satisfaction, therefore, understanding the passenger’s attitudes about mass transit accessibility. The study area of this research is Bangkok Mass Transit system (BTS Skytrain) at Saphan Taksin station. 200 passengers at Saphan Taksin station were asked to rate the questionnaires survey that considers accessibility aspects of convenience, safety, feeder connectivity, and other dimensions. The survey was to find out the passenger attitudes and satisfaction for access to the BTS station, and the result shows several factors that influence the passenger choice of using the BTS as a public transportation mode and passenger’s opinion that needs to concern for the development mass transit system and accessibility performance.

Development of a Double Coating Technique for Recycled Concrete Aggregates Used in Hot-mix Asphalt

The use of recycled concrete aggregates (RCAs) in hot-mix asphalt (HMA) production could ease natural aggregate shortage and maintain sustainability in modern societies. However, it was the attached cement mortar and other impurities that make the RCAs behave differently than high-quality aggregates. Therefore, different upgrading treatments were suggested to enhance its properties before being used in HMA production. Disappointedly, some of these treatments had caused degradation to some RCA properties. In order to avoid degradation, a coating technique is developed. This technique is based on combining of two main treatments, so it is named as double coating technique (DCT). Dosages of 0%, 20%, 40% and 60% uncoated RCA, RCA coated with Cement Slag Paste (CSP), and Double Coated Recycled Concrete Aggregates (DCRCAs) in place of granite aggregates were evaluated. The results indicated that the DCT improves strength and reduces water absorption of the DCRCAs compared with uncoated RCAs and RCA coated with CSP. In addition, the DCRCA asphalt mixtures exhibit stability values higher than those obtained for mixes made with granite aggregates, uncoated RCAs and RCAs coated with CSP. Also, the DCRCA asphalt mixtures require less bitumen to achieve the optimum bitumen content (OBC) than those manufactured with uncoated RCA and RCA-coated with CSP. Although the results obtained were encouraging, more testing is required in order to examine the effect of the DCT on performance properties of DCRCA- asphalt mixtures such as rutting and fatigue.

Assessment of Socio-Cultural Sustainability: A Comparative Analysis of Two Neighborhoods in Kolkata Metropolitan Area

To transform a space into a better livable and sustainable zone, United Nations Summit in New York 2015, has decided upon 17 sustainable development goals (SDGs) that approach directly to achieve inclusive, people-centric, sustainable developments. Though sustainability has been majorly constructed by four pillars, namely, Ecological, Economic, Social and Cultural, but it is essentially reduced to economic and ecological consideration in the context of developing countries. Therefore, in most cases planning has reduced its ambit to concentrate around the tangible infrastructure, ignoring the fundamentals of socio-cultural heritage. With the accentuating hype of infrastructural augmentation, lack of emphasis of traditional concerns like ethnicity and social connection have further diluted the situation, disintegrating cultural continuity. As cultural continuity lacks its cohesion, it’s growing absence increasingly acts as a catalyst to degrade the heritage structures, spaces around and linking these structures, and the ability of stakeholders in identifying themselves rooted in that particular space. Hence, this paper will argue that sustainability depends on the people and their interaction with their surroundings, their culture and livelihood. The interaction between people and their surroundings strengthen community building and social interaction that abides by stakeholders reverting back to their roots. To assess the socio-cultural sustainability of the city of Kolkata, two study areas are selected, namely, an old settlement from the northern part of the city of Kolkata (KMA), imbued with social connection, age-old cultural and ethnic bonding and, another cluster of new high-rises coming up in the Newtown area having portions of planned city extension on the eastern side of the city itself. Whereas, Newtown prioritizes the surging post-industrial trends of economic aspiration and ecological aspects of urban sustainability; the former settlements of northern Kolkata still continue to represent the earliest community settlement of the British-colonial-cum native era and even the pre-colonial era, permeated with socio-cultural reciprocation. Thus, to compare and assess the inlayed organizational structure of both the spaces in the two cases, selected areas have been surveyed to portray their current imageability. The argument of this paper is structured in 5parts. First, an introduction of the idea has been forwarded, Secondly, a literature review has been conducted to ground the proposed ideas, Thirdly, methodology has been discussed and appropriate case study areas have been selected, Fourthly, surveys and analyses has been forwarded and lastly, the paper has arrived at a set of conclusions by suggesting a threefold development to create happy, healthy and sustainable community.

A Decade of Creating an Alternative Banking System in Tanzania: The Current State of Affairs of Islamic Banks

The concept of financial inclusion has been tabled in the whole world where practitioners, academicians, policy makers and economists are working hard to look for the best possible opportunities in order to enable the whole society to be in the banking cycle. The Islamic banking system is considered to be one of the said opportunities. Countries like the United Kingdom, United States of America, Malaysia, Saudi Arabia, the whole of the United Arab Emirates and many African countries have accommodated the aspect of Islamic banking in the conventional banking system as one of the financial inclusion strategies. This paper tries to analyse the current state of affairs of the Islamic Banking system in Tanzania in order to understand the improvement of the provision of Islamic banking products and services in the said country. The paper discusses the historical background of the banking system in Tanzania, the level of penetration of banking products and services and the coming of the Islamic banking system in the country. Furthermore, the paper discusses banking regulatory bodies, legal instruments governing banking operations as well as number of legal challenges facing Islamic banking operations in the country. Following a critical literature review, the paper discovered that there is no legal instrument which talks about the introduction and provision of Islamic banking system in Tanzania. Furthermore, the Islamic banking system was considered as a banking product which is absolutely incorrect because Islamic banking is considered to be as a banking system of its own. In addition to that, it has been discovered that lack of a proper regulatory system and legal instruments to harmonize the conventional and Islamic banking systems has resulted in the closure of one Islamic window in the country, which in the end affects the credibility of the newly introduced banking system. In its conclusive remarks, the paper suggests that Tanzania should work on all legal challenges affecting the smooth operations of the Islamic banking system. This can be in a way of adopting various Islamic banking legal models which are used in countries like Malaysia and others, or a borrowing legal harmonization process which has been adopted by the UK, Uganda, Nigeria and Kenya.

Dead Bodies that Matter: A Consensual Qualitative Research on the Lived Experience of Embalmers

Embalmers are widely recognized as someone who mends the cadavers, but behind that is a great deal of work. These professionals are competent in physiology, chemicals, and cosmetics. Another is that such professionals face cadavers day-to-day. Given this background, the researchers intended to find out the lived experience of embalmers. The purpose of the present study is to discover the essence of the work of these professionals, to determine factors that influence their work, the depths of their life and on how the occupation affects upon physical, emotional-mental, spiritual, moral and social aspects. The researchers used the Consensual Qualitative Research, and eight embalmers, seven male and one female, from Manila and Bulacan were interviewed using open-ended questions and were used to triangulate the results. A primary research team conducted the consensus of domains, and an external auditor reviewed the results. A personal data sheet was also used, this helped the researchers group the respondents according to demographic profile. The results of the consensual qualitative research investigation revealed the four core components of the lived experience of embalmers which are motivation, struggles, acceptance, and contentment. The results revealed core components that play an important role in their everyday lives as an embalmer, daily hardships, and source of their pleasures. The present study will help future researchers, embalmers, and society.

A Formal Property Verification for Aspect-Oriented Programs in Software Development

Software development for complex systems requires efficient and automatic tools that can be used to verify the satisfiability of some critical properties such as security ones. With the emergence of Aspect-Oriented Programming (AOP), considerable work has been done in order to better modularize the separation of concerns in the software design and implementation. The goal is to prevent the cross-cutting concerns to be scattered across the multiple modules of the program and tangled with other modules. One of the key challenges in the aspect-oriented programs is to be sure that all the pieces put together at the weaving time ensure the satisfiability of the overall system requirements. Our paper focuses on this problem and proposes a formal property verification approach for a given property from the woven program. The approach is based on the control flow graph (CFG) of the woven program, and the use of a satisfiability modulo theories (SMT) solver to check whether each property (represented par one aspect) is satisfied or not once the weaving is done.

Evolving Digital Circuits for Early Stage Breast Cancer Detection Using Cartesian Genetic Programming

Cartesian Genetic Programming (CGP) is explored to design an optimal circuit capable of early stage breast cancer detection. CGP is used to evolve simple multiplexer circuits for detection of malignancy in the Fine Needle Aspiration (FNA) samples of breast. The data set used is extracted from Wisconsins Breast Cancer Database (WBCD). A range of experiments were performed, each with different set of network parameters. The best evolved network detected malignancy with an accuracy of 99.14%, which is higher than that produced with most of the contemporary non-linear techniques that are computational expensive than the proposed system. The evolved network comprises of simple multiplexers and can be implemented easily in hardware without any further complications or inaccuracy, being the digital circuit.

Genetic Algorithm Optimization of the Economical, Ecological and Self-Consumption Impact of the Energy Production of a Single Building

This paper presents an optimization method based on genetic algorithm for the energy management inside buildings developed in the frame of the project Smart Living Lab (SLL) in Fribourg (Switzerland). This algorithm optimizes the interaction between renewable energy production, storage systems and energy consumers. In comparison with standard algorithms, the innovative aspect of this project is the extension of the smart regulation over three simultaneous criteria: the energy self-consumption, the decrease of greenhouse gas emissions and operating costs. The genetic algorithm approach was chosen due to the large quantity of optimization variables and the non-linearity of the optimization function. The optimization process includes also real time data of the building as well as weather forecast and users habits. This information is used by a physical model of the building energy resources to predict the future energy production and needs, to select the best energetic strategy, to combine production or storage of energy in order to guarantee the demand of electrical and thermal energy. The principle of operation of the algorithm as well as typical output example of the algorithm is presented.

First Person View Camera Based Quadcopter with Raspberry Pi

This paper studies in details about the need of quadcopter in various fields especially in the place of remote area where the road transportation facility is very less. It is used to monitor and collect data in a specific region. The movement of this quadcopter is controlled by the Raspberry Pi. FPV camera is used for capturing the image and will transmit the image to the receiver which can be monitored using an android smart phone. This is mainly used for surveillance purpose and hidden activities can be captured.

Preparation of Carbon Nanofiber Reinforced HDPE Using Dialkylimidazolium as a Dispersing Agent: Effect on Thermal and Rheological Properties

High-density polyethylene reinforced with carbon nanofibers (HDPE/CNF) have been prepared via melt processing using dialkylimidazolium tetrafluoroborate (ionic liquid) as a dispersion agent. The prepared samples were characterized by thermogravimetric (TGA) and differential scanning calorimetric (DSC) analyses. The samples blended with imidazolium ionic liquid exhibit higher thermal stability. DSC analysis showed clear miscibility of ionic liquid in the HDPE matrix and showed single endothermic peak. The melt rheological analysis of HDPE/CNF composites was performed using an oscillatory rheometer. The influence of CNF and ionic liquid concentration (ranging from 0, 0.5, and 1 wt%) on the viscoelastic parameters was investigated at 200 °C with an angular frequency range of 0.1 to 100 rad/s. The rheological analysis shows the shear-thinning behavior for the composites. An improvement in the viscoelastic properties was observed as the nanofiber concentration increases. The progress in the modulus values was attributed to the structural rigidity imparted by the high aspect ratio CNF. The modulus values and complex viscosity of the composites increased significantly at low frequencies. Composites blended with ionic liquid exhibit slightly lower values of complex viscosity and modulus over the corresponding HDPE/CNF compositions. Therefore, reduction in melt viscosity is an additional benefit for polymer composite processing as a result of wetting effect by polymer-ionic liquid combinations.

An Efficient Motion Recognition System Based on LMA Technique and a Discrete Hidden Markov Model

Human motion recognition has been extensively increased in recent years due to its importance in a wide range of applications, such as human-computer interaction, intelligent surveillance, augmented reality, content-based video compression and retrieval, etc. However, it is still regarded as a challenging task especially in realistic scenarios. It can be seen as a general machine learning problem which requires an effective human motion representation and an efficient learning method. In this work, we introduce a descriptor based on Laban Movement Analysis technique, a formal and universal language for human movement, to capture both quantitative and qualitative aspects of movement. We use Discrete Hidden Markov Model (DHMM) for training and classification motions. We improve the classification algorithm by proposing two DHMMs for each motion class to process the motion sequence in two different directions, forward and backward. Such modification allows avoiding the misclassification that can happen when recognizing similar motions. Two experiments are conducted. In the first one, we evaluate our method on a public dataset, the Microsoft Research Cambridge-12 Kinect gesture data set (MSRC-12) which is a widely used dataset for evaluating action/gesture recognition methods. In the second experiment, we build a dataset composed of 10 gestures(Introduce yourself, waving, Dance, move, turn left, turn right, stop, sit down, increase velocity, decrease velocity) performed by 20 persons. The evaluation of the system includes testing the efficiency of our descriptor vector based on LMA with basic DHMM method and comparing the recognition results of the modified DHMM with the original one. Experiment results demonstrate that our method outperforms most of existing methods that used the MSRC-12 dataset, and a near perfect classification rate in our dataset.

Use of Cellulosic Fibres in Double Layer Porous Asphalt

Climate change, namely precipitation patterns alteration, has led to extreme conditions such as floods and droughts. In turn, excessive construction has led to the waterproofing of the soil, increasing the surface runoff and decreasing the groundwater recharge capacity. The permeable pavements used in areas with low traffic lead to a decrease in the probability of floods peaks occurrence and the sediments reduction and pollutants transport, ensuring rainwater quality improvement. This study aims to evaluate the porous asphalt performance, developed in the laboratory, with addition of cellulosic fibres. One of the main objectives of cellulosic fibres use is to stop binder drainage, preventing its loss during storage and transport. Comparing to the conventional porous asphalt the cellulosic fibres addition improved the porous asphalt performance. The cellulosic fibres allowed the bitumen content increase, enabling retention and better aggregates coating and, consequently, a greater mixture durability. With this solution, it is intended to develop better practices of resilience and adaptation to the extreme climate changes and respond to the sustainability current demands, through the eco-friendly materials use. The mix design was performed for different size aggregates (with fine aggregates – PA1 and with coarse aggregates – PA2). The percentage influence of the fibres to be used was studied. It was observed that overall, the binder drainage decreases as the cellulose fibres percentage increases. It was found that the PA2 mixture obtained most binder drainage relative to PA1 mixture, irrespective of the fibres percentage used. Subsequently, the performance was evaluated through laboratory tests of indirect tensile stiffness modulus, water sensitivity, permeability and permanent deformation. The stiffness modulus for the two mixtures groups (with and without cellulosic fibres) presented very similar values between them. For the water sensitivity test it was observed that porous asphalt containing more fine aggregates are more susceptible to the water presence than mixtures with coarse aggregates. The porous asphalt with coarse aggregates have more air voids which allow water to pass easily leading to ITSR higher values. In the permeability test was observed that asphalt porous without cellulosic fibres presented had lower permeability than asphalt porous with cellulosic fibres. The resistance to permanent deformation results indicates better behaviour of porous asphalt with cellulosic fibres, verifying a bigger rut depth in porous asphalt without cellulosic fibres. In this study, it was observed that porous asphalt with bitumen higher percentages improve the performance to permanent deformation. This fact was only possible due to the bitumen retention by the cellulosic fibres.

A Holistic Conceptual Measurement Framework for Assessing the Effectiveness and Viability of an Academic Program

In today’s very competitive higher education industry (HEI), HEIs are faced with the primary concern of developing, deploying, and sustaining high quality academic programs. Today, the HEI has well-established accreditation systems endorsed by a country’s legislation and institutions. The accreditation system is an educational pathway focused on the criteria and processes for evaluating educational programs. Although many aspects of the accreditation process highlight both the past and the present (prove), the “program review” assessment is "forward-looking assessment" (improve) and thus transforms the process into a continuing assessment activity rather than a periodic event. The purpose of this study is to propose a conceptual measurement framework for program review to be used by HEIs to undertake a robust and targeted approach to proactively and continuously review their academic programs to evaluate its practicality and effectiveness as well as to improve the education of the students. The proposed framework consists of two main components: program review principles and the program review measurement matrix.

Email Based Global Automation with Raspberry Pi and Control Circuit Module: Development of Smart Home Application

Global Automation is an emerging technology of today’s era and is based on Internet of Things (IoT). Global automation deals with the controlling of electrical appliances throughout the world. The fabrication of this system has been carried out with interfacing an electrical control system module to Raspberry Pi. An electrical control system module includes a relay driver mechanism through which appliances are controlled automatically in respective condition. In this research project, one email ID has been assigned to Raspberry Pi, and the users from different location having different email ID can mail to Raspberry Pi on assigned email address “[email protected]” with subject heading “Device Control” with predefined command on compose email line. Also, a notification regarding current working condition of this system has been updated on respective user email ID. This approach is an innovative way of implementing smart automation system through which a user can control their electrical appliances like light, fan, television, refrigerator, etc. in their home with the use of email facility. The development of this project helps to enhance the concept of smart home application as well as industrial automation.

A Neuron Model of Facial Recognition and Detection of an Authorized Entity Using Machine Learning System

This paper has critically examined the use of Machine Learning procedures in curbing unauthorized access into valuable areas of an organization. The use of passwords, pin codes, user’s identification in recent times has been partially successful in curbing crimes involving identities, hence the need for the design of a system which incorporates biometric characteristics such as DNA and pattern recognition of variations in facial expressions. The facial model used is the OpenCV library which is based on the use of certain physiological features, the Raspberry Pi 3 module is used to compile the OpenCV library, which extracts and stores the detected faces into the datasets directory through the use of camera. The model is trained with 50 epoch run in the database and recognized by the Local Binary Pattern Histogram (LBPH) recognizer contained in the OpenCV. The training algorithm used by the neural network is back propagation coded using python algorithmic language with 200 epoch runs to identify specific resemblance in the exclusive OR (XOR) output neurons. The research however confirmed that physiological parameters are better effective measures to curb crimes relating to identities.

Harmonizing Spatial Plans: A Methodology to Integrate Sustainable Mobility and Energy Plans to Promote Resilient City Planning

Local administrations are facing established targets on sustainable development from different disciplines at the heart of different city departments. Nevertheless, some of these targets, such as CO2 reduction, relate to two or more disciplines, as it is the case of sustainable mobility and energy plans (SUMP & SECAP/SEAP). This opens up the possibility to efficiently cooperate among different city departments and to create and develop harmonized spatial plans by using available resources and together achieving more ambitious goals in cities. The steps of the harmonization processes developed result in the identification of areas to achieve common strategic objectives. Harmonization, in other words, helps different departments in local authorities to work together and optimize the use or resources by sharing the same vision, involving key stakeholders, and promoting common data assessment to better optimize the resources. A methodology to promote resilient city planning via the harmonization of sustainable mobility and energy plans is presented in this paper. In order to validate the proposed methodology, a representative city engaged in an innovation process in efficient spatial planning is used as a case study. The harmonization process of sustainable mobility and energy plans covers identifying matching targets between different fields, developing different spatial plans with dual benefit and common indicators guaranteeing the continuous improvement of the harmonized plans. The proposed methodology supports local administrations in consistent spatial planning, considering both energy efficiency and sustainable mobility. Thus, municipalities can use their human and economic resources efficiently. This guarantees an efficient upgrade of land use plans integrating energy and mobility aspects in order to achieve sustainability targets, as well as to improve the wellbeing of its citizens.

Understanding the Selectional Preferences of the Twitter Mentions Network

Users in social networks either unicast or broadcast their messages. At mention is the popular way of unicasting for Twitter whereas general tweeting could be considered as broadcasting method. Understanding the information flow and dynamics within a Social Network and modeling the same is a promising and an open research area called Information Diffusion. This paper seeks an answer to a fundamental question - understanding if the at-mention network or the unicasting pattern in social media is purely random in nature or is there any user specific selectional preference? To answer the question we present an empirical analysis to understand the sociological aspects of Twitter mentions network within a social network community. To understand the sociological behavior we analyze the values (Schwartz model: Achievement, Benevolence, Conformity, Hedonism, Power, Security, Self-Direction, Stimulation, Traditional and Universalism) of all the users. Empirical results suggest that values traits are indeed salient cue to understand how the mention-based communication network functions. For example, we notice that individuals possessing similar values unicast among themselves more often than with other value type people. We also observe that traditional and self-directed people do not maintain very close relationship in the network with the people of different values traits.