The Influence of Doping of Fullerene Derivative (PCBM) on the Optical Properties of Vanadyl Phthalocyanine (VOPc)

This paper presents a spectroscopic study on doping of Vanadyl pathalocyanine (VOPc) by [6,6]-phenyl C61 butyric acid methyl ester (PCBM). The films are characterized by UV/Vis/NIR spectroscopy. A drastic increase in the absorption coefficient has been observed with increasing dopant concentration. Optical properties of VOPc:PCBM films deposited by spin coating technique were studied in detail. Optical band gap decreased with the PCBM incorporation in the VOPc film. Optical band gap calculated from the absorption spectra decreased from 3.32 eV to 3.26 eV with a variation of 0–75 % of PCBM concentration in the VOPC films.

Application of Artificial Neural Network to Classification Surface Water Quality

Water quality is a subject of ongoing concern. Deterioration of water quality has initiated serious management efforts in many countries. This study endeavors to automatically classify water quality. The water quality classes are evaluated using 6 factor indices. These factors are pH value (pH), Dissolved Oxygen (DO), Biochemical Oxygen Demand (BOD), Nitrate Nitrogen (NO3N), Ammonia Nitrogen (NH3N) and Total Coliform (TColiform). The methodology involves applying data mining techniques using multilayer perceptron (MLP) neural network models. The data consisted of 11 sites of canals in Dusit district in Bangkok, Thailand. The data is obtained from the Department of Drainage and Sewerage Bangkok Metropolitan Administration during 2007-2011. The results of multilayer perceptron neural network exhibit a high accuracy multilayer perception rate at 96.52% in classifying the water quality of Dusit district canal in Bangkok Subsequently, this encouraging result could be applied with plan and management source of water quality.

GEP Considering Purchase Prices, Profits of IPPs and Reliability Criteria Using Hybrid GA and PSO

In this paper, optimal generation expansion planning (GEP) is investigated considering purchase prices, profits of independent power producers (IPPs) and reliability criteria using a new method based on hybrid coded Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). In this approach, optimal purchase price of each IPP is obtained by HCGA and reliability criteria are calculated by PSO technique. It should be noted that reliability criteria and the rate of carbon dioxide (CO2) emission have been considered as constraints of the GEP problem. Finally, the proposed method has been tested on the case study system. The results evaluation show that the proposed method can simply obtain optimal purchase prices of IPPs and is a fast method for calculation of reliability criteria in expansion planning. Also, considering the optimal purchase prices and profits of IPPs in generation expansion planning are caused that the expansion costs are decreased and the problem is solved more exactly.

Developing a Campus Sustainability Assessment Framework for the National University of Malaysia

Campus sustainability is the goal of a university striving for sustainable development. This study found that of 17 popular approaches, two comprehensive campus sustainability assessment frameworks were developed in the context of Sustainability in Higher Education (SHE), and used by many university campuses around the world. Sustainability Tracking Assessment and Rating Systems (STARS) and the Campus Sustainability Assessment Framework (CSAF) approaches are more comprehensive than others. Therefore, the researchers examined aspects and elements used by CSAF and STARS in the approach to develop a campus sustainability assessment framework for Universiti Kebangsaan Malaysia (UKM). Documents analysis found that CSAF and STARS do not focus on physical development, especially the construction industry, as key elements of campus sustainability assessment. This finding is in accordance with the Sustainable UKM Programme which consists of three main components of sustainable community, ecosystem and physical development.

Design, Analysis and Modeling of Dual Band Microstrip Loop Antenna Using Defective Ground Plane

Present wireless communication demands compact and intelligent devices with multitasking capabilities at affordable cost. The focus in the presented paper is on a dual band antenna for wireless communication with the capability of operating at two frequency bands with same structure. Two resonance frequencies are observed with the second operation band at 4.2GHz approximately three times the first resonance frequency at 1.5GHz. Structure is simple loop of microstrip line with characteristic impedance 50 ohms. The proposed antenna is designed using defective ground structure (DGS) and shows the nearly one third reductions in size as compared to without DGS. This antenna was simulated on electromagnetic (EM) simulation software and fabricated using microwave integrated circuit technique on RT-Duroid dielectric substrate (εr= 2.22) of thickness (H=15 mils). The designed antenna was tested on automatic network analyzer and shows the good agreement with simulated results. The proposed structure is modeled into an equivalent electrical circuit and simulated on circuit simulator. Subsequently, theoretical analysis was carried out and simulated. The simulated, measured, equivalent circuit response, and theoretical results shows good resemblance. The bands of operation draw many potential applications in today’s wireless communication.

Village Construction under China-s Rapid Urbanization: The Role and Strategy of Planning in the Rural Areas

With China's urbanization continuing to accelerate, a amount of rural people flood into China's cities in recent years, and the issue of agriculture, rural areas and farmers is getting more and more serious. In 2005, the Chinese government put forward a plan for “the construction of new rural village", in order to coordinate the development of both urban and rural areas. The planning method of rural region differs sharply from that of urban areas, as same as village social structure and habits of farmer-s life, so the studies which can consider the special needs of village construction in China are absolutely essential. This paper expresses explore current situation and problems existing in the construction of China-s new rural village, such as bigger gap between urban and rural areas, excessive new construction projects, extinct traditional village style and so on. It tries to analyze the deep reason of the present situation of the village from law system, industrial structure, financial sources and planning method. Then it also provides a guide for developing policies and procedures promoting the development of china-s rural areas.

Walking and Sustainable Urban Transportation

Walking as a type of non-motorized transportation has various social, economical and environmental privileges. Also, today different aspects of sustainable development have been emphasized and promotion of sustainable transportation modes has been considered according to this approach. Therefore, the objective of this research is exploring the circumstance of relationship between walking and sustainable urban transportation.For writing this article, the most important resources related to the traits of walking have been surveyed via a documentary method and after explaining the concept of sustainable transportation and its indicators, benefiting from the viewpoints of transportation experts of Tehran, as the capital and greatest city of Iran, different modes of urban transportation have been compared in proportion to each criterion and to each other and have been analyzed according to AHP method. The results of this study indicate that walking is the most sustainable mode of inner city transportation.

Fuzzy Control of a Quarter-Car Suspension System

An active suspension system has been proposed to improve the ride comfort. A quarter-car 2 degree-of-freedom (DOF) system is designed and constructed on the basis of the concept of a four-wheel independent suspension to simulate the actions of an active vehicle suspension system. The purpose of a suspension system is to support the vehicle body and increase ride comfort. The aim of the work described in the paper was to illustrate the application of fuzzy logic technique to the control of a continuously damping automotive suspension system. The ride comfort is improved by means of the reduction of the body acceleration caused by the car body when road disturbances from smooth road and real road roughness. The paper describes also the model and controller used in the study and discusses the vehicle response results obtained from a range of road input simulations. In the conclusion, a comparison of active suspension fuzzy control and Proportional Integration derivative (PID) control is shown using MATLAB simulations.

Torque Ripple Minimization in Switched Reluctance Motor Using Passivity-Based Robust Adaptive Control

In this paper by using the port-controlled Hamiltonian (PCH) systems theory, a full-order nonlinear controlled model is first developed. Then a nonlinear passivity-based robust adaptive control (PBRAC) of switched reluctance motor in the presence of external disturbances for the purpose of torque ripple reduction and characteristic improvement is presented. The proposed controller design is separated into the inner loop and the outer loop controller. In the inner loop, passivity-based control is employed by using energy shaping techniques to produce the proper switching function. The outer loop control is employed by robust adaptive controller to determine the appropriate Torque command. It can also overcome the inherent nonlinear characteristics of the system and make the whole system robust to uncertainties and bounded disturbances. A 4KW 8/6 SRM with experimental characteristics that takes magnetic saturation into account is modeled, simulation results show that the proposed scheme has good performance and practical application prospects.

Clustered Signatures for Modeling and Recognizing 3D Rigid Objects

This paper describes a probabilistic method for three-dimensional object recognition using a shared pool of surface signatures. This technique uses flatness, orientation, and convexity signatures that encode the surface of a free-form object into three discriminative vectors, and then creates a shared pool of data by clustering the signatures using a distance function. This method applies the Bayes-s rule for recognition process, and it is extensible to a large collection of three-dimensional objects.

Genetic-Fuzzy Inverse Controller for a Robot Arm Suitable for On Line Applications

The robot is a repeated task plant. The control of such a plant under parameter variations and load disturbances is one of the important problems. The aim of this work is to design Geno-Fuzzy controller suitable for online applications to control single link rigid robot arm plant. The genetic-fuzzy online controller (indirect controller) has two genetic-fuzzy blocks, the first as controller, the second as identifier. The identification method is based on inverse identification technique. The proposed controller it tested in normal and load disturbance conditions.

Developing of Thai Classical Music Ensemble in Rattanakosin Period

The research titled “Developing of Thai Classical Music Ensemble in Rattanakosin Period" aimed 1) to study the history of Thai Classical Music Ensemble in Rattanakosin Period and 2) to analyze changing in each period of Rattanakosin Era. This is the historical and documentary research. The data was collected by in-depth interview those musicians, and academic music experts and field study. The focus group discussion was conducted to analyze and conclude the findings. The research found that the history of Thai Classical Music Ensemble in Rattanakosin Period derived from the Ayutthaya period. Thai classical music ensemble consisted of “Wong Pipat", “Wong Mahori", “Wong Kreang Sai". “Wong Kubmai", “Wong Krongkak", “Brass Band", and “Kan Band" which were used to ceremony, ritual, drama, performs and entertainment. Changed of the Thai music in the early Rattanakosin Period were passed from the Ayutthaya Period and the influence of the western civilization. New Band formed in Thai Music were “Orchestra" and “Contemporary Band". The role of Thai music was changed from the ceremonial rituals to entertainment. Development of the Thai music during the reign of King Rama 1 to King Rama 7, was improved from the court. But after the revolution, the musical patronage of the court was maintained by the Government. Thai Classical Music Ensemble were performed to be standard pattern.

Geostatistical Analysis and Mapping of Groundlevel Ozone in a Medium Sized Urban Area

Ground-level tropospheric ozone is one of the air pollutants of most concern. It is mainly produced by photochemical processes involving nitrogen oxides and volatile organic compounds in the lower parts of the atmosphere. Ozone levels become particularly high in regions close to high ozone precursor emissions and during summer, when stagnant meteorological conditions with high insolation and high temperatures are common. In this work, some results of a study about urban ozone distribution patterns in the city of Badajoz, which is the largest and most industrialized city in Extremadura region (southwest Spain) are shown. Fourteen sampling campaigns, at least one per month, were carried out to measure ambient air ozone concentrations, during periods that were selected according to favourable conditions to ozone production, using an automatic portable analyzer. Later, to evaluate the ozone distribution at the city, the measured ozone data were analyzed using geostatistical techniques. Thus, first, during the exploratory analysis of data, it was revealed that they were distributed normally, which is a desirable property for the subsequent stages of the geostatistical study. Secondly, during the structural analysis of data, theoretical spherical models provided the best fit for all monthly experimental variograms. The parameters of these variograms (sill, range and nugget) revealed that the maximum distance of spatial dependence is between 302-790 m and the variable, air ozone concentration, is not evenly distributed in reduced distances. Finally, predictive ozone maps were derived for all points of the experimental study area, by use of geostatistical algorithms (kriging). High prediction accuracy was obtained in all cases as cross-validation showed. Useful information for hazard assessment was also provided when probability maps, based on kriging interpolation and kriging standard deviation, were produced.

Dynamic Admission Control for Quality of Service in IP Networks

The goal of admission control is to support the Quality of Service demands of real-time applications via resource reservation in IP networks. In this paper we introduce a novel Dynamic Admission Control (DAC) mechanism for IP networks. The DAC dynamically allocates network resources using the previous network pattern for each path and uses the dynamic admission algorithm to improve bandwidth utilization using bandwidth brokers. We evaluate the performance of the proposed mechanism through trace-driven simulation experiments in view point of blocking probability, throughput and normalized utilization.

Design of Service-Oriented Pervasive System for Urban Computing in Cali Zoo (OpenZoo)

The increasing popularity of wireless technologies and mobile computing devices has enabled new application areas and research. One of these new areas is pervasive systems in urban environments, because urban environments are characterized by high concentration of these technologies and devices. In this paper we will show the process of pervasive system design in urban environments, using as use case a local zoo in Cali, Colombia. Based on an ethnographic studio, we present the design of a pervasive system for urban computing based on service oriented architecture to controlled environment of Cali Zoo. In this paper, the reader will find a methodological approach for the design of similar systems, using data collection methods, conceptual frameworks for urban environments and considerations of analysis and design of service oriented systems.

Optimal Water Allocation: Sustainable Management of Dam Reservoir

Scarcity of water resources and huge costs of establishing new hydraulic installations necessitate optimal exploitation from existing reservoirs. Sustainable management and efficient exploitation from existing finite water resources are important factors in water resource management, particularly in the periods of water insufficiency and in dry regions, and on account of competitive allocations in the view of exploitation management. This study aims to minimize reservoir water release from a determined rate of demand. A numerical model for water optimal exploitation has been developed using GAMS introduced by the World Bank and applied to the case of Meijaran dam, northern Iran. The results indicate that this model can optimize the function of reservoir exploitation while required water for lower parts of the region will be supplied. Further, allocating optimal water from reservoir, the optimal rate of water allocated to any group of the users were specified to increase benefits in curve dam exploitation.

Resistor-less Current-mode Universal Biquad Filter Using CCTAs and Grounded Capacitors

This article presents a current-mode universal biquadratic filter. The proposed circuit can apparently provide standard functions of the biquad filter: low-pass, high-pass, bandpass, band-reject and all-pass functions. The circuit uses 4 current controlled transconductance amplifiers (CCTAs) and 2 grounded capacitors. In addition, the pole frequency and quality factor can be adjusted by electronic method by adjusting the bias currents of the CCTA. The proposed circuit uses only grounded capacitors without additional external resistors, the proposed circuit is considerably appropriate to further developing into an integrated circuit. The results of PSPICE simulation program are corresponding to the theoretical analysis.

An Evaluation of Land Use Control in Hokkaido, Japan

This study focuses on an evaluation of Hokkaido which is the northernmost and largest prefecture by surface area in Japan and particularly on two points: the rivalry between all kinds of land use such as urban land and agricultural and forestry land in various cities and their surrounding areas and the possibilities for forestry biomass in areas other than those mentioned above and grasps which areas require examination of the nature of land use control and guidance through conducting land use analysis at the district level using GIS (Geographic Information Systems). The results of analysis in this study demonstrated that it is essential to divide the whole of Hokkaido into two areas: those within delineated city planning areas and those outside of delineated city planning areas and to conduct an evaluation of each land use control. In delineated urban areas, particularly urban areas, it is essential to re-examine land use from the point of view of compact cities or smart cities along with conducting an evaluation of land use control that focuses on issues of rivalry between all kinds of land use such as urban land and agricultural and forestry land. In areas outside of delineated urban areas, it is desirable to aim to build a specific community recycling range based on forest biomass utilization by conducting an evaluation of land use control concerning the possibilities for forest biomass focusing particularly on forests within and outside of city planning areas.

Night-Time Traffic Light Detection Based On SVM with Geometric Moment Features

This paper presents an effective traffic lights detection method at the night-time. First, candidate blobs of traffic lights are extracted from RGB color image. Input image is represented on the dominant color domain by using color transform proposed by Ruta, then red and green color dominant regions are selected as candidates. After candidate blob selection, we carry out shape filter for noise reduction using information of blobs such as length, area, area of boundary box, etc. A multi-class classifier based on SVM (Support Vector Machine) applies into the candidates. Three kinds of features are used. We use basic features such as blob width, height, center coordinate, area, area of blob. Bright based stochastic features are also used. In particular, geometric based moment-s values between candidate region and adjacent region are proposed and used to improve the detection performance. The proposed system is implemented on Intel Core CPU with 2.80 GHz and 4 GB RAM and tested with the urban and rural road videos. Through the test, we show that the proposed method using PF, BMF, and GMF reaches up to 93 % of detection rate with computation time of in average 15 ms/frame.

Robust Power System Stabilizer Design Using Particle Swarm Optimization Technique

Power system stabilizers (PSS) are now routinely used in the industry to damp out power system oscillations. In this paper, particle swarm optimization (PSO) technique is applied to design a robust power system stabilizer (PSS). The design problem of the proposed controller is formulated as an optimization problem and PSO is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. The non-linear simulation results are presented under wide range of operating conditions; disturbances at different locations as well as for various fault clearing sequences to show the effectiveness and robustness of the proposed controller and their ability to provide efficient damping of low frequency oscillations. Further, all the simulations results are compared with a conventionally designed power system stabilizer to show the superiority of the proposed design approach.