Incentives to Introduce Environmental Management System in the Context of Building an eco-Innovative Potential – A Case of Podkarpackie Voivodeship

This paper shows the results of empirical research. It presents experiences of Polish companies from the Podkarpackie voivodeship connected with implementing EMS according to the requirements of the ISO 14001 international standard. The incentives to introduce and certify organizational eco-innovation, which formal EMSs are treated as, are presented in this paper.

Kinetics of Polyethylene Terephthalate (PET)and Polystyrene (PS) Dynamic Pyrolysis

Thermo-chemical treatment (TCT) such as pyrolysis is getting recognized as a valid route for (i) materials and valuable products and petrochemicals recovery; (ii) waste recycling; and (iii) elemental characterization. Pyrolysis is also receiving renewed attention for its operational, economical and environmental advantages. In this study, samples of polyethylene terephthalate (PET) and polystyrene (PS) were pyrolysed in a microthermobalance reactor (using a thermogravimetric-TGA setup). Both polymers were prepared and conditioned prior to experimentation. The main objective was to determine the kinetic parameters of the depolymerization reactions that occur within the thermal degradation process. Overall kinetic rate constants (ko) and activation energies (Eo) were determined using the general kinetics theory (GKT) method previously used by a number of authors. Fitted correlations were found and validated using the GKT, errors were within ± 5%. This study represents a fundamental step to pave the way towards the development of scaling relationship for the investigation of larger scale reactors relevant to industry.

Elaboration and Optimization of Pellets Used for Precise Glass Grinding

In this work, grinding or microcutting tools in the form of pellets were manufactured using a bounded alumina abrasive grains. The bound used is a vitreous material containing quartz feldspars, kaolinite and a quantity of hematite. The pellets were used in glass grinding process to replace the free abrasive grains lapping process. The study of the elaborated pellets were done to define their effectiveness in the grinding process and to optimize the influence of the pellets elaboration parameters. The obtained results show the existence of an optimal combination of the pellets elaboration parameters for each glass grinding phase (coarse to fine grinding). The final roughness (rms) reached by the elaborated pellets on a BK7 glass surface was about 0.392 μm.

Cognitive Radio Networks (CRN): Resource Allocation Techniques Based On DNA-inspired Computing

Spectrum is a scarce commodity, and considering the spectrum scarcity faced by the wireless-based service providers led to high congestion levels. Technical inefficiencies from pooled, since all networks share a common pool of channels, exhausting the available channels will force networks to block the services. Researchers found that cognitive radio (CR) technology may resolve the spectrum scarcity. A CR is a self-configuring entity in a wireless networking that senses its environment, tracks changes, and frequently exchanges information with their networks. However, CRN facing challenges and condition become worst while tracks changes i.e. reallocation of another under-utilized channels while primary network user arrives. In this paper, channels or resource reallocation technique based on DNA-inspired computing algorithm for CRN has been proposed.

Educational Robotics Constructivism and Modeling of Robots using Reverse Engineering

The project describes the modeling of various architectures mechatronics specifically morphologies of robots in an educational environment. Each structure developed by students of pre-school, primary and secondary was created using the concept of reverse engineering in a constructivist environment, to later be integrated in educational software that promotes the teaching of educational Robotics in a virtual and economic environment.

Estimating Frequency, Amplitude and Phase of Two Sinusoids with Very Close Frequencies

This paper presents an algorithm to estimate the parameters of two closely spaced sinusoids, providing a frequency resolution that is more than 800 times greater than that obtained by using the Discrete Fourier Transform (DFT). The strategy uses a highly optimized grid search approach to accurately estimate frequency, amplitude and phase of both sinusoids, keeping at the same time the computational effort at reasonable levels. The proposed method has three main characteristics: 1) a high frequency resolution; 2) frequency, amplitude and phase are all estimated at once using one single package; 3) it does not rely on any statistical assumption or constraint. Potential applications to this strategy include the difficult task of resolving coincident partials of instruments in musical signals.

A Study of Feedback Strategy to Improve Inspector Performance by Using Computer Based Training

The purpose of this research was to study the inspector performance by using computer based training (CBT). Visual inspection task was printed circuit board (PCB) simulated on several types of defects. Subjects were 16 undergraduate randomly selected from King Mongkut-s University of Technology Thonburi and test for 20/20. Then, they were equally divided on performance into two groups (control and treatment groups) and were provided information before running the experiment. Only treatment group was provided feedback information after first experiment. Results revealed that treatment group was showed significantly difference at the level of 0.01. The treatment group showed high percentage on defects detected. Moreover, the attitude of inspectors on using the CBT to inspection was showed on good. These results have been showed that CBT could be used for training to improve inspector performance.

Error Effects on SAR Image Resolution using Range Doppler Imaging Algorithm

Synthetic Aperture Radar (SAR) is an imaging radar form by taking full advantage of the relative movement of the antenna with respect to the target. Through the simultaneous processing of the radar reflections over the movement of the antenna via the Range Doppler Algorithm (RDA), the superior resolution of a theoretical wider antenna, termed synthetic aperture, is obtained. Therefore, SAR can achieve high resolution two dimensional imagery of the ground surface. In addition, two filtering steps in range and azimuth direction provide accurate enough result. This paper develops a simulation in which realistic SAR images can be generated. Also, the effect of velocity errors in the resulting image has also been investigated. Taking some velocity errors into account, the simulation results on the image resolution would be presented. Most of the times, algorithms need to be adjusted for particular datasets, or particular applications.

Active Power Filter dimensioning Using a Hysteresis Current Controller

This paper aims to give a full study of the dynamic behavior of a mono-phase active power filter. First, the principle of the parallel active power filter will be introduced. Then, a dimensioning procedure for all its components will be explained in detail, such as the input filter, the current and voltage controllers. This active power filter is simulated using OrCAD program showing the validity of the theoretical study.

Shift Invariant Support Vector Machines Face Recognition System

In this paper, we present a new method for incorporating global shift invariance in support vector machines. Unlike other approaches which incorporate a feature extraction stage, we first scale the image and then classify it by using the modified support vector machines classifier. Shift invariance is achieved by replacing dot products between patterns used by the SVM classifier with the maximum cross-correlation value between them. Unlike the normal approach, in which the patterns are treated as vectors, in our approach the patterns are treated as matrices (or images). Crosscorrelation is computed by using computationally efficient techniques such as the fast Fourier transform. The method has been tested on the ORL face database. The tests indicate that this method can improve the recognition rate of an SVM classifier.

Development of A Meta Description Language for Software/Hardware Cooperative Design and Verification for Model-Checking Systems

Model-checking tools such as Symbolic Model Verifier (SMV) and NuSMV are available for checking hardware designs. These tools can automatically check the formal legitimacy of a design. However, NuSMV is too low level for describing a complete hardware design. It is therefore necessary to translate the system definition, as designed in a language such as Verilog or VHDL, into a language such as NuSMV for validation. In this paper, we present a meta hardware description language, Melasy, that contains a code generator for existing hardware description languages (HDLs) and languages for model checking that solve this problem.

Agent-Based Simulation and Analysis of Network-Centric Air Defense Missile Systems

Network-Centric Air Defense Missile Systems (NCADMS) represents the superior development of the air defense missile systems and has been regarded as one of the major research issues in military domain at present. Due to lack of knowledge and experience on NCADMS, modeling and simulation becomes an effective approach to perform operational analysis, compared with those equation based ones. However, the complex dynamic interactions among entities and flexible architectures of NCADMS put forward new requirements and challenges to the simulation framework and models. ABS (Agent-Based Simulations) explicitly addresses modeling behaviors of heterogeneous individuals. Agents have capability to sense and understand things, make decisions, and act on the environment. They can also cooperate with others dynamically to perform the tasks assigned to them. ABS proves an effective approach to explore the new operational characteristics emerging in NCADMS. In this paper, based on the analysis of network-centric architecture and new cooperative engagement strategies for NCADMS, an agent-based simulation framework by expanding the simulation framework in the so-called System Effectiveness Analysis Simulation (SEAS) was designed. The simulation framework specifies components, relationships and interactions between them, the structure and behavior rules of an agent in NCADMS. Based on scenario simulations, information and decision superiority and operational advantages in NCADMS were analyzed; meanwhile some suggestions were provided for its future development.

Context Modeling and Reasoning Approach in Context-Aware Middleware for URC System

To realize the vision of ubiquitous computing, it is important to develop a context-aware infrastructure which can help ubiquitous agents, services, and devices become aware of their contexts because such computational entities need to adapt themselves to changing situations. A context-aware infrastructure manages the context model representing contextual information and provides appropriate information. In this paper, we introduce Context-Aware Middleware for URC System (hereafter CAMUS) as a context-aware infrastructure for a network-based intelligent robot system and discuss the ontology-based context modeling and reasoning approach which is used in that infrastructure.

Induction of Apoptosis by Newcastle Disease Virus Strains AF220 and V4-UPM in Human Promyelocytic Leukemia (HL60) and Human T-Lymphoblastic Leukemia (CEM-SS) Cells

Newcastle Disease Virus (NDV), an avian paramyxovirus, is a highly contagious, generalised virus disease of domestic poultry and wild birds characterized by gastro-intestinal, respiratory and nervous signs. In this study, it was shown that NDV strain AF2240 and V4-UPM are cytolytic to Human Promyelocytic Leukemia, HL60 and Human T-lymphoblastic Leukemia, CEM-SS cells. Results from MTT cytolytic assay showed that CD50 for NDV AF2240 against HL60 was 130 HAU and NDV V4-UPM against HL60 and CEM-SS were 110.6 and 150.9 HAU respectively. Besides, both strains were found to inhibit the proliferation of cells in a dose dependent manner. The mode of cell death either by apoptosis or necrosis was further analyzed using acridine orange and propidium iodide (AO/PI) staining. Our results showed that both NDV strains induced primarily apoptosis in treated cells at CD50 concentration. In conclusion, both NDV strains caused cytolytic effects primarily via apoptosis in leukemia cells.

New Hybrid Algorithm for Task Scheduling in Grid Computing to Decrease missed Task

The purpose of Grid computing is to utilize computational power of idle resources which are distributed in different areas. Given the grid dynamism and its decentralize resources, there is a need for an efficient scheduler for scheduling applications. Since task scheduling includes in the NP-hard problems various researches have focused on invented algorithms especially the genetic ones. But since genetic is an inherent algorithm which searches the problem space globally and does not have the efficiency required for local searching, therefore, its combination with local searching algorithms can compensate for this shortcomings. The aim of this paper is to combine the genetic algorithm and GELS (GAGELS) as a method to solve scheduling problem by which simultaneously pay attention to two factors of time and number of missed tasks. Results show that the proposed algorithm can decrease makespan while minimizing the number of missed tasks compared with the traditional methods.

Enhancing Human-Computer Interaction and Feedback in Touchscreen Icon

In order to enhance the usability of the human computer interface (HCI) on the touchscreen, this study explored the optimal tactile depth and effect of visual cues on the user-s tendency to touch the touchscreen icons. The experimental program was designed on the touchscreen in this study. Results indicated that the ratio of the icon size to the tactile depth was 1:0.106. There were significant effects of experienced users and novices on the tactile feedback depth (p < 0.01). In addition, the results proved that the visual cues provided a feedback that helped to guide the user-s touch icons accurately and increased the capture efficiency for a tactile recognition field. This tactile recognition field was 18.6 mm in length. There was consistency between the experienced users and novices under the visual cue effects. Finally, the study developed an applied design with touch feedback for touchscreen icons.

On Positive Definite Solutions of Quaternionic Matrix Equations

The real representation of the quaternionic matrix is definited and studied. The relations between the positive (semi)define quaternionic matrix and its real representation matrix are presented. By means of the real representation, the relation between the positive (semi)definite solutions of quaternionic matrix equations and those of corresponding real matrix equations is established.

A Fuzzy Classifier with Evolutionary Design of Ellipsoidal Decision Regions

A fuzzy classifier using multiple ellipsoids approximating decision regions for classification is to be designed in this paper. An algorithm called Gustafson-Kessel algorithm (GKA) with an adaptive distance norm based on covariance matrices of prototype data points is adopted to learn the ellipsoids. GKA is able toadapt the distance norm to the underlying distribution of the prototypedata points except that the sizes of ellipsoids need to be determined a priori. To overcome GKA's inability to determine appropriate size ofellipsoid, the genetic algorithm (GA) is applied to learn the size ofellipsoid. With GA combined with GKA, it will be shown in this paper that the proposed method outperforms the benchmark algorithms as well as algorithms in the field.

Sensorless PM Motor with Multi Degree of Freedom Fuzzy Control

This paper introduces application of multi degree of freedom fuzzy(MDOFF) controller in permanent magnet (PM)drive system. The drive system model is developed for FO control. Simulation of the system is carried out to predict the performance at NL and under load,. The results indicate that application of MDOFF controller is effective for sensorless PM drive system.

Performance of a Turbofan Engine with Intercooling and Regeneration

Pollution emission levels of aircraft engines are a nowadays high concern. Any technological advance that could reduce emission levels is always welcome. In what concerns aircraft engines, a possible solution for this problem could be the use of regenerators and intercoolers. These components might reduce the specific fuel consumption, increase efficiency and specific thrust and consequently reduce the pollution levels of the engine. This is not a novel solution. These heat exchangers are already is use in stationary engines. For aircraft engines, the extra weight of the needed hardware could overcome the fuel saved. This work compares a conventional engine with configurations that use intercoolers and regenerators.