Curbing Cybercrime by Application of Internet Users’ Identification System (IUIS) in Nigeria

Cybercrime is now becoming a big challenge in Nigeria apart from the traditional crime. Inability to identify perpetrators is one of the reasons for the growing menace. This paper proposes a design for monitoring internet users’ activities in order to curbing cybercrime. It requires redefining the operations of Internet Service Providers (ISPs) which will now mandate users to be authenticated before accessing the internet. In implementing this work which can be adapted to a larger scale, a virtual router application is developed and configured to mimic a real router device. A sign-up portal is developed to allow users to register with the ISP. The portal asks for identification information which will include bio-data and government issued identification data like National Identity Card number, et cetera. A unique username and password are chosen by the user to enable access to the internet which will be used to reference him to an Internet Protocol Address (IP Address) of any system he uses on the internet and thereby associating him to any criminal act related to that IP address at that particular time. Questions such as “What happen when another user knows the password and uses it to commit crime?” and other pertinent issues are addressed.

Optimum Signal-to-noise Ratio Performance of Electron Multiplying Charge Coupled Devices

Electron multiplying charge coupled devices (EMCCDs) have revolutionized the world of low light imaging by introducing on-chip multiplication gain based on the impact ionization effect in the silicon. They combine the sub-electron readout noise with high frame rates. Signal-to-noise Ratio (SNR) is an important performance parameter for low-light-level imaging systems. This work investigates the SNR performance of an EMCCD operated in Non-inverted Mode (NIMO) and Inverted Mode (IMO). The theory of noise characteristics and operation modes is presented. The results show that the SNR of is determined by dark current and clock induced charge at high gain level. The optimum SNR performance is provided by an EMCCD operated in NIMO in short exposure and strong cooling applications. In contrast, an IMO EMCCD is preferable.

Influence of IMV on Space Station

To study the impact of the inter-module ventilation (IMV) on the space station, the Computational Fluid Dynamic (CFD) model under the influence of IMV, the mathematical model, boundary conditions and calculation method are established and determined to analyze the influence of IMV on cabin air flow characteristics and velocity distribution firstly; and then an integrated overall thermal mathematical model of the space station is used to consider the impact of IMV on thermal management. The results show that: the IMV has a significant influence on the cabin air flow, the flowrate of IMV within a certain range can effectively improve the air velocity distribution in cabin, if too much may lead to its deterioration; IMV can affect the heat deployment of the different modules in space station, thus affecting its thermal management, the use of IMV can effectively maintain the temperature levels of the different modules and help the space station to dissipate the waste heat.

Carbon Isotope Discrimination, A Tool for Screening of Salinity Tolerance of Genotypes

This study carried out in order to investigate the effects of salinity on carbon isotope discrimination (Δ) of shoots and roots of four sugar beet cultivars (cv) including Madison (British origin) and three Iranian culivars (7233-P12, 7233-P21 and 7233-P29). Plants were grown in sand culture medium in greenhouse conditions. Plants irrigated with saline water (tap water as control, 50 mM, 150 mM, 250 mM and 350 mM of NaCl + CaCl2 in 5 to 1 molar ratio) from 4 leaves stage for 16 weeks. Carbon isotope discrimination significantly decreased with increasing salinity. Significant differences of Δ between shoot and root were observed in all cvs and all levels of salinity. Madison cv showed lower Δ in shoot and root than other three cvs at all levels of salinity expect control, but cv 7233-P29 had significantly higher Δ values at saline conditions of 150 mM and above. Therefore, Δ might be applicable, as a useful tool, for study of salinity tolerance of sugar beet genotypes.

Refinement of Object-Z Specifications Using Morgan-s Refinement Calculus

Morgan-s refinement calculus (MRC) is one of the well-known methods allowing the formality presented in the program specification to be continued all the way to code. On the other hand, Object-Z (OZ) is an extension of Z adding support for classes and objects. There are a number of methods for obtaining code from OZ specifications that can be categorized into refinement and animation methods. As far as we know, only one refinement method exists which refines OZ specifications into code. However, this method does not have fine-grained refinement rules and thus cannot be automated. On the other hand, existing animation methods do not present mapping rules formally and do not support the mapping of several important constructs of OZ, such as all cases of operation expressions and most of constructs in global paragraph. In this paper, with the aim of providing an automatic path from OZ specifications to code, we propose an approach to map OZ specifications into their counterparts in MRC in order to use fine-grained refinement rules of MRC. In this way, having counterparts of our specifications in MRC, we can refine them into code automatically using MRC tools such as RED. Other advantages of our work pertain to proposing mapping rules formally, supporting the mapping of all important constructs of Object-Z, and considering dynamic instantiation of objects while OZ itself does not cover this facility.

Key Issues and Challenges of Intrusion Detection and Prevention System: Developing Proactive Protection in Wireless Network Environment

Nowadays wireless technology plays an important role in public and personal communication. However, the growth of wireless networking has confused the traditional boundaries between trusted and untrusted networks. Wireless networks are subject to a variety of threats and attacks at present. An attacker has the ability to listen to all network traffic which becoming a potential intrusion. Intrusion of any kind may lead to a chaotic condition. In addition, improperly configured access points also contribute the risk to wireless network. To overcome this issue, a security solution that includes an intrusion detection and prevention system need to be implemented. In this paper, first the security drawbacks of wireless network will be analyzed then investigate the characteristics and also the limitations on current wireless intrusion detection and prevention system. Finally, the requirement of next wireless intrusion prevention system will be identified including some key issues which should be focused on in the future to overcomes those limitations.

Optimization of Extraction of Phenolic Compounds from Avicennia marina (Forssk.)Vierh using Response Surface Methodology

Optimization of extraction of phenolic compounds from Avicennia marina using response surface methodology was carried out during the present study. Five levels, three factors rotatable design (CCRD) was utilized to examine the optimum combination of extraction variables based on the TPC of Avicennia marina leaves. The best combination of response function was 78.41 °C, drying temperature; 26.18°C; extraction temperature and 36.53 minutes of extraction time. However, the procedure can be promptly extended to the study of several others pharmaceutical processes like purification of bioactive substances, drying of extracts and development of the pharmaceutical dosage forms for the benefit of consumers.

A Software-Supported Methodology for Designing General-Purpose Interconnection Networks for Reconfigurable Architectures

Modern applications realized onto FPGAs exhibit high connectivity demands. Throughout this paper we study the routing constraints of Virtex devices and we propose a systematic methodology for designing a novel general-purpose interconnection network targeting to reconfigurable architectures. This network consists of multiple segment wires and SB patterns, appropriately selected and assigned across the device. The goal of our proposed methodology is to maximize the hardware utilization of fabricated routing resources. The derived interconnection scheme is integrated on a Virtex style FPGA. This device is characterized both for its high-performance, as well as for its low-energy requirements. Due to this, the design criterion that guides our architecture selections was the minimal Energy×Delay Product (EDP). The methodology is fully-supported by three new software tools, which belong to MEANDER Design Framework. Using a typical set of MCNC benchmarks, extensive comparison study in terms of several critical parameters proves the effectiveness of the derived interconnection network. More specifically, we achieve average Energy×Delay Product reduction by 63%, performance increase by 26%, reduction in leakage power by 21%, reduction in total energy consumption by 11%, at the expense of increase of channel width by 20%.

Gendered Power Relations in the School:Construction of Schoolgirl Femininities in a Turkish High School

In this paper our aim is to explore the construction of schoolgirl femininities, drawing on the results of an ethnographic study conducted in a high school in Ankara, Turkey. In this case study which tries to explore the complexities of gender discourses, we were initially motivated by the questions that have been put forward by critical and feminist literature on education which emphasize the necessarily conflicting and partial nature of both reproduction and resistance and the importance of gendered power relations in the school context. Drawing on this paradigm our research tries to address to a more specific question: how are multiple schoolgirl femininities constructed within the context of gendered school culture, and especially in relation to hegemonic masculinity? Our study reveals that the general framework of multiple femininities is engendered by a tension between two inter-related positions. The first one is different strategies of accommodation and resistance to the gender-related problems of education. The second one is the school experience of girls which is conditioned by their differential position vis-à-vis the masculine resistance culture that is dominant in the school.

Localizing and Recognizing Integral Pitches of Cheque Document Images

Automatic reading of handwritten cheque is a computationally complex process and it plays an important role in financial risk management. Machine vision and learning provide a viable solution to this problem. Research effort has mostly been focused on recognizing diverse pitches of cheques and demand drafts with an identical outline. However most of these methods employ templatematching to localize the pitches and such schemes could potentially fail when applied to different types of outline maintained by the bank. In this paper, the so-called outline problem is resolved by a cheque information tree (CIT), which generalizes the localizing method to extract active-region-of-entities. In addition, the weight based density plot (WBDP) is performed to isolate text entities and read complete pitches. Recognition is based on texture features using neural classifiers. Legal amount is subsequently recognized by both texture and perceptual features. A post-processing phase is invoked to detect the incorrect readings by Type-2 grammar using the Turing machine. The performance of the proposed system was evaluated using cheque and demand drafts of 22 different banks. The test data consists of a collection of 1540 leafs obtained from 10 different account holders from each bank. Results show that this approach can easily be deployed without significant design amendments.

Thermal Load Calculations of Multilayered Walls

Thermal load calculations have been performed for multi-layered walls that are composed of three different parts; a common (sand and cement) plaster, and two types of locally produced soft and hard bricks. The masonry construction of these layered walls was based on concrete-backed stone masonry made of limestone bricks joined by mortar. These multilayered walls are forming the outer walls of the building envelope of a typical Libyan house. Based on the periodic seasonal weather conditions, within the Libyan cost region during summer and winter, measured thermal conductivity values were used to implement such seasonal variation of heat flow and the temperature variations through the walls. The experimental measured thermal conductivity values were obtained using the Hot Disk technique. The estimation of the thermal resistance of the wall layers ( R-values) is based on measurements and calculations. The numerical calculations were done using a simplified analytical model that considers two different wall constructions which are characteristics of such houses. According to the obtained results, the R-values were quite low and therefore, several suggestions have been proposed to improve the thermal loading performance that will lead to a reasonable human comfort and reduce energy consumption.

Hydrogen and Diesel Combustion on a Single Cylinder Four Stroke Diesel Engine in Dual Fuel mode with Varying Injection Strategies

The present energy situation and the concerns about global warming has stimulated active research interest in non-petroleum, carbon free compounds and non-polluting fuels, particularly for transportation, power generation, and agricultural sectors. Environmental concerns and limited amount of petroleum fuels have caused interests in the development of alternative fuels for internal combustion (IC) engines. The petroleum crude reserves however, are declining and consumption of transport fuels particularly in the developing countries is increasing at high rates. Severe shortage of liquid fuels derived from petroleum may be faced in the second half of this century. Recently more and more stringent environmental regulations being enacted in the USA and Europe have led to the research and development activities on clean alternative fuels. Among the gaseous fuels hydrogen is considered to be one of the clean alternative fuel. Hydrogen is an interesting candidate for future internal combustion engine based power trains. In this experimental investigation, the performance and combustion analysis were carried out on a direct injection (DI) diesel engine using hydrogen with diesel following the TMI(Time Manifold Injection) technique at different injection timings of 10 degree,45 degree and 80 degree ATDC using an electronic control unit (ECU) and injection durations were controlled. Further, the tests have been carried out at a constant speed of 1500rpm at different load conditions and it can be observed that brake thermal efficiency increases with increase in load conditions with a maximum gain of 15% at full load conditions during all injection strategies of hydrogen. It was also observed that with the increase in hydrogen energy share BSEC started reducing and it reduced to a maximum of 9% as compared to baseline diesel at 10deg ATDC injection during maximum injection proving the exceptional combustion properties of hydrogen.

Roadmapping as a Collaborative Strategic Decision-Making Process: Shaping Social Dialogue Options for the European Banking Sector

The new status generated by technological advancements and changes in the global economy raises important issues on how communities and organisations need to innovate upon their traditional processes in order to adapt to the challenges of the Knowledge Society. The DialogoS+ European project aims to study the role of and promote social dialogue in the banking sector, strengthen the link between old and new members and make social dialogue at the European level a force for innovation and change, also given the context of the international crisis emerging in 2008- 2009. Under the scope of DialogoS+, this paper describes how the community of Europe-s banking sector trade unions attempted to adapt to the challenges of the Knowledge Society by exploiting the benefits of new channels of communication, learning, knowledge generation and diffusion focusing on the concept of roadmapping. Important dimensions of social dialogue such as collective bargaining and working conditions are addressed.

A Parallel Architecture for the Real Time Correction of Stereoscopic Images

In this paper, we will present an architecture for the implementation of a real time stereoscopic images correction's approach. This architecture is parallel and makes use of several memory blocs in which are memorized pre calculated data relating to the cameras used for the acquisition of images. The use of reduced images proves to be essential in the proposed approach; the suggested architecture must so be able to carry out the real time reduction of original images.

Design and Development of Automatic Leveling and Equalizing Hoist Device for Spacecraft

To solve the quick and accurate level-adjusting problem in the process of spacecraft precise mating, automatic leveling and equalizing hoist device for spacecraft is developed. Based on lifting point adjustment by utilizing XY-workbench, the leveling and equalizing controller by a self-adaptive control algorithm is proposed. By simulation analysis and lifting test using engineering prototype, validity and reliability of the hoist device is verified, which can meet the precision mating requirements of practical applications for spacecraft.

Features of Party Construction in the Course of Political Modernization of Kazakhstan

This article considers the main features of party construction in the course of political modernization of Kazakhstan. Along with consideration of party construction author analyzed how the transformation of the party system was fulfilled in Kazakhstan. Besides the basic stages in the course of party construction were explained by the author. The statistical data is cited.

Modeling of Flood Mitigation Structures for Sarawak River Sub-basin Using Info Works River Simulation (RS)

The distressing flood scenarios that occur in recent years at the surrounding areas of Sarawak River have left damages of properties and indirectly caused disruptions of productive activities. This study is meant to reconstruct a 100-year flood event that took place in this river basin. Sarawak River Subbasin was chosen and modeled using the one-dimensional hydrodynamic modeling approach using InfoWorks River Simulation (RS), in combination with Geographical Information System (GIS). This produces the hydraulic response of the river and its floodplains in extreme flooding conditions. With different parameters introduced to the model, correlations of observed and simulated data are between 79% – 87%. Using the best calibrated model, flood mitigation structures are imposed along the sub-basin. Analysis is done based on the model simulation results. Result shows that the proposed retention ponds constructed along the sub-basin provide the most efficient reduction of flood by 34.18%.

Removal of Cibacron Brilliant Yellow 3G-P Dye from Aqueous Solutions Using Coffee Husks as Non-Conventional Low-Cost Sorbent

The purpose of this research is to establish the experimental conditions for removal of Cibacron Brilliant Yellow 3G-P dye (CBY) from aqueous solutions by sorption onto coffee husks as a low-cost sorbent. The effects of various experimental parameters (e.g. initial CBY dye concentration, sorbent mass, pH, temperature) were examined and the optimal experimental conditions were determined. The results indicated that the removal of the dye was pH dependent and at initial pH of 2, the dye was removed effectively. The CBY dye sorption data were fitted to Langmuir, Freundlich, Temkin and Dubinin-Radushkevich equilibrium models. The maximum sorption capacity of CBY dye ions onto coffee husks increased from 24.04 to 35.04 mg g-1 when the temperature was increased from 293 to 313 K. The calculated sorption thermodynamic parameters including ΔG°, ΔH°, and ΔS° indicated that the CBY dye sorption onto coffee husks is a spontaneous, endothermic and mainly physical in nature.

A New Method for Multiobjective Optimization Based on Learning Automata

The necessity of solving multi dimensional complicated scientific problems beside the necessity of several objective functions optimization are the most motive reason of born of artificial intelligence and heuristic methods. In this paper, we introduce a new method for multiobjective optimization based on learning automata. In the proposed method, search space divides into separate hyper-cubes and each cube is considered as an action. After gathering of all objective functions with separate weights, the cumulative function is considered as the fitness function. By the application of all the cubes to the cumulative function, we calculate the amount of amplification of each action and the algorithm continues its way to find the best solutions. In this Method, a lateral memory is used to gather the significant points of each iteration of the algorithm. Finally, by considering the domination factor, pareto front is estimated. Results of several experiments show the effectiveness of this method in comparison with genetic algorithm based method.