A Spatial Point Pattern Analysis to Recognize Fail Bit Patterns in Semiconductor Manufacturing

The yield management system is very important to produce high-quality semiconductor chips in the semiconductor manufacturing process. In order to improve quality of semiconductors, various tests are conducted in the post fabrication (FAB) process. During the test process, large amount of data are collected and the data includes a lot of information about defect. In general, the defect on the wafer is the main causes of yield loss. Therefore, analyzing the defect data is necessary to improve performance of yield prediction. The wafer bin map (WBM) is one of the data collected in the test process and includes defect information such as the fail bit patterns. The fail bit has characteristics of spatial point patterns. Therefore, this paper proposes the feature extraction method using the spatial point pattern analysis. Actual data obtained from the semiconductor process is used for experiments and the experimental result shows that the proposed method is more accurately recognize the fail bit patterns.

Pattern Recognition Using Feature Based Die-Map Clusteringin the Semiconductor Manufacturing Process

Depending on the big data analysis becomes important, yield prediction using data from the semiconductor process is essential. In general, yield prediction and analysis of the causes of the failure are closely related. The purpose of this study is to analyze pattern affects the final test results using a die map based clustering. Many researches have been conducted using die data from the semiconductor test process. However, analysis has limitation as the test data is less directly related to the final test results. Therefore, this study proposes a framework for analysis through clustering using more detailed data than existing die data. This study consists of three phases. In the first phase, die map is created through fail bit data in each sub-area of die. In the second phase, clustering using map data is performed. And the third stage is to find patterns that affect final test result. Finally, the proposed three steps are applied to actual industrial data and experimental results showed the potential field application.

Aflatoxins Aggravate the Incidence of Salmonellosis Outbreak in Fattening Calves: A Case Study

Fever, bloody diarrhea and high mortality rate were the main clinical finding in a group of fattening calves. Analysis of corn silage revealed presence of aflatoxins at level of 370 ppb. This level of aflatoxins in the feed of cattle is somewhat low to be the main cause of reported signs. Leukocytopenia, anemia, decreased lymphocytic activity and lowered phagocytic index are the main hematological and immunological alterations in diseased calves. Bacteriological investigation revealed isolation of pathogenic Salmonella typhimurium from the rectal swabs of diseased calves. Our results suggested that, long duration of exposure to aflatoxins even at small concentrations may considered as predisposing factor for the incidence of natural infectious outbreaks as salmonellosis due to its immunosuppressive effect. We can conclude that the veterinarians and owners must be given an attention to the relation between aflatoxicosis and salmonellosis under field condition. We are recommended that the treatment program during similar outbreaks must be including anti-aflatoxins preparations beside the antimicrobial therapy.

Studies on Storage Behavior of Cabbage Head as Influenced by Organic Amendments and Inorganic Fertilizers

The influence of organic amendments and inorganic fertilizers on cabbage head was investigated to determine their effect on storage behavior and organoleptic quality. Field cabbage was raised by combining fourteen different treatments comprising of organic amendments and inorganic fertilizers at different levels. The result showed that nutrient schedule of the crop significantly influenced the physiological loss in weight (PLW) and organoleptic quality of cabbage head and judicious selection of nutrient combination can extend the storage life and reduce the post harvest detoriaration of head. The nutrient schedule comprising of higher level of FYM (16 t ha-1) along with 75% of recommended inorganic fertilizers in conjugation with seedling inoculation of biofertilizer emerged as potential nutrient source for improving storage life, marketability and maintaining nutritional and organoleptic quality under ambient storage condition.

The Analysis of Nanoptenna for Extreme Fast Communication (XFC) over Short Distance

This paper focuses on the analysis of Nanoptenna for extreme fast communication. The Nanoptenna is basically a nano antenna designed for communication at optical range of frequencies. Since, this range of frequencies includes the visible spectrum of the light, so there is a high possibility of the data transfer at high rates and extreme fast communication (XFC). The shape chosen for the analysis is a bow tie structure due to its various characteristics of electric field enhancement.

Satisfaction Survey of a Displaced Population Affected by a New Planned Development of Naya Raipur, India

Urban planning is the need of the hour in a rapidly developing county like India. In essence, urban planning enhances the quality of land at a reasonable cost. Naya (New) Raipur is the new planned capital of the Indian state of Chhattisgarh, and is one of India’s few planned cities. Over the next decade it will drastically change the landscape of the state of Chhattisgarh. This new planned development is quintessential in growing this backward region and providing for future infrastructure. Key questions that arise are: How are people living in the surrounding region of New Raipur affected by its development? Are the affected people satisfied with compensation and rehabilitation that has been provided by the New Raipur Development Authority? To answer these questions, field research study in the form of questionnaires, interviews and site visits was conducted. To summarize the findings, while a majority of the surveyed population was dissatisfied with the rehabilitation and compensation provided by the New Raipur Development Authority, they were very positive about the success of the new development. Most thought that the new city would help their careers, improve job opportunities, improve prospects for their future generations, and benefit society as a whole. To improve rehabilitation schemes for the future, the reasons for the negative sentiment brewing amongst the villagers regarding the monetary compensation was investigated. Most villagers deemed the monetary compensation to be lacking as they had squandered their financial windfall already. With numerous interviews and site visits, it was discovered that the lump sum form of monetary compensation was to blame. With a huge sum of money received at once and a lack of financial education, many villagers squandered this newly gained money on unnecessary purchases such as alcohol and expensive vehicles without investing for the long run in farmland and education for their children. One recommendation proposed to the New Raipur Development Authority (NRDA) for future monetary compensation design in times of rehabilitating people was to provide payments in installments rather than lump sums and educate the people about investing the compensation money wisely. This would save them from wasting money they receive and the ensuing dissatisfaction of squandering that money.

Vibration Characteristics of Functionally Graded Material Skew Plate in Thermal Environment

In the present investigation, free vibration of functionally graded material (FGM) skew plates under thermal environment is studied. Kinematics equations are based on the Reddy’s higher order shear deformation theory and a nine noded isoparametric Lagrangian element is adopted to mesh the plate geometry. The issue of C1 continuity requirement related to the assumed displacement field has been circumvented effectively to develop C0 finite element formulation. Effective mechanical properties of the constituents of the plate are considered to be as position and temperature dependent and assumed to vary in the thickness direction according to a simple power law distribution. The displacement components of a rectangular plate are mapped into skew plate geometry by means of suitable transformation rule. One dimensional Fourier heat conduction equation is used to ascertain the temperature profile of the plate along thickness direction. Influence of different parameters such as volume fraction index, boundary condition, aspect ratio, thickness ratio and temperature field on frequency parameter of the FGM skew plate is demonstrated by performing various examples and the related findings are discussed briefly. New results are generated for vibration of the FGM skew plate under thermal environment, for the first time, which may be implemented in the future research involving similar kind of problems.

Web–Based Tools and Databases for Micro-RNA Analysis: A Review

MicroRNAs (miRNAs), a class of approximately 22 nucleotide long non coding RNAs which play critical role in different biological processes. The mature microRNA is usually 19–27 nucleotides long and is derived from a bigger precursor that folds into a flawed stem-loop structure. Mature micro RNAs are involved in many cellular processes that encompass development, proliferation, stress response, apoptosis, and fat metabolism by gene regulation. Resent finding reveals that certain viruses encode their own miRNA that processed by cellular RNAi machinery. In recent research indicate that cellular microRNA can target the genetic material of invading viruses. Cellular microRNA can be used in the virus life cycle; either to up regulate or down regulate viral gene expression Computational tools use in miRNA target prediction has been changing drastically in recent years. Many of the methods have been made available on the web and can be used by experimental researcher and scientist without expert knowledge of bioinformatics. With the development and ease of use of genomic technologies and computational tools in the field of microRNA biology has superior tremendously over the previous decade. This review attempts to give an overview over the genome wide approaches that have allow for the discovery of new miRNAs and development of new miRNA target prediction tools and databases.

Development of a Speed Sensorless IM Drives

The primary objective of this paper is to elimination of the problem of sensitivity to parameter variation of induction motor drive. The proposed sensorless strategy is based on an algorithm permitting a better simultaneous estimation of the rotor speed and the stator resistance including an adaptive mechanism based on the lyaponov theory. To study the reliability and the robustness of the sensorless technique to abnormal operations, some simulation tests have been performed under several cases. The proposed sensorless vector control scheme showed a good performance behavior in the transient and steady states, with an excellent disturbance rejection of the load torque.

ANN Based Model Development for Material Removal Rate in Dry Turning in Indian Context

This paper is intended to develop an artificial neural network (ANN) based model of material removal rate (MRR) in the turning of ferrous and nonferrous material in a Indian small-scale industry. MRR of the formulated model was proved with the testing data and artificial neural network (ANN) model was developed for the analysis and prediction of the relationship between inputs and output parameters during the turning of ferrous and nonferrous materials. The input parameters of this model are operator, work-piece, cutting process, cutting tool, machine and the environment. The ANN model consists of a three layered feedforward back propagation neural network. The network is trained with pairs of independent/dependent datasets generated when machining ferrous and nonferrous material. A very good performance of the neural network, in terms of contract with experimental data, was achieved. The model may be used for the testing and forecast of the complex relationship between dependent and the independent parameters in turning operations.

Statistical Analysis for Overdispersed Medical Count Data

Many researchers have suggested the use of zero inflated Poisson (ZIP) and zero inflated negative binomial (ZINB) models in modeling overdispersed medical count data with extra variations caused by extra zeros and unobserved heterogeneity. The studies indicate that ZIP and ZINB always provide better fit than using the normal Poisson and negative binomial models in modeling overdispersed medical count data. In this study, we proposed the use of Zero Inflated Inverse Trinomial (ZIIT), Zero Inflated Poisson Inverse Gaussian (ZIPIG) and zero inflated strict arcsine models in modeling overdispered medical count data. These proposed models are not widely used by many researchers especially in the medical field. The results show that these three suggested models can serve as alternative models in modeling overdispersed medical count data. This is supported by the application of these suggested models to a real life medical data set. Inverse trinomial, Poisson inverse Gaussian and strict arcsine are discrete distributions with cubic variance function of mean. Therefore, ZIIT, ZIPIG and ZISA are able to accommodate data with excess zeros and very heavy tailed. They are recommended to be used in modeling overdispersed medical count data when ZIP and ZINB are inadequate.

Multiplayer RC-Car Driving System in a Collaborative Augmented Reality Environment

We developed a prototype system for multiplayer RC-car driving in a collaborative augmented reality (AR) environment. The tele-existence environment is constructed by superimposing digital data onto images captured by a camera on an RC-car, enabling players to experience an augmented coexistence of the digital content and the real world. Marker-based tracking was used for estimating position and orientation of the camera. The plural RC-cars can be operated in a field where square markers are arranged. The video images captured by the camera are transmitted to a PC for visual tracking. The RC-cars are also tracked by using an infrared camera attached to the ceiling, so that the instability is reduced in the visual tracking. Multimedia data such as texts and graphics are visualized to be overlaid onto the video images in the geometrically correct manner. The prototype system allows a tele-existence sensation to be augmented in a collaborative AR environment.

Elastic Stress Analysis of Composite Cantilever Beam Loaded Uniformly

In this investigation an elastic stress analysis is carried out a woven steel fiber reinforced thermoplastic cantilever beam loaded uniformly at the upper surface. The composite beam material consists of low density polyethylene as a thermoplastic (LDFE, f.2.12) and woven steel fibers. Granules of the polyethylene are put into the moulds and they are heated up to 160°C by using electrical resistance. Subsequently, the material is held for 5min under 2.5 MPa at this temperature. The temperature is decreased to 30°C under 15 MPa pressure in 3min. Closed form solution is found satisfying both the governing differential equation and boundary conditions. We investigated orientation angle effect on stress distribution of composite cantilever beams. The results show that orientation angle play an important role in determining the responses of a woven steel fiber reinforced thermoplastic cantilever beams and an optimal design of these structures.

Verification and Application of Finite Element Model Developed for Flood Routing in Rivers

Flood wave propagation in river channel flow can be enunciated by nonlinear equations of motion for unsteady flow. It is difficult to find analytical solution of these non-linear equations. Hence, in this paper verification of the finite element model has been carried out against available numerical predictions and field data. The results of the model indicate a good matching with both Preissmann scheme and HEC-RAS model for a river reach of 29km at both sites (15km from upstream and at downstream end) for discharge hydrographs. It also has an agreeable comparison with the Preissemann scheme for the flow depth (stage) hydrographs. The proposed model has also been applying to forecast daily discharges at 400km downstream in the Indus River from Sukkur barrage of Sindh, Pakistan, which demonstrates accurate model predictions with observed the daily discharges. Hence, this model may be utilized for flood warnings in advance.

Particle Swarm Optimization Based PID Power System Stabilizer for a Synchronous Machine

This paper proposes a swarm intelligence method that yields optimal Proportional-Integral-Derivative (PID) Controller parameters of a power system stabilizer (PSS) in a single machine infinite bus system. The proposed method utilizes the Particle Swarm Optimization (PSO) algorithm approach to generate the optimal tuning parameters. The paper is modeled in the MATLAB Simulink Environment to analyze the performance of a synchronous machine under several load conditions. At the same operating point, the PID-PSS parameters are also tuned by Ziegler-Nichols method. The dynamic performance of proposed controller is compared with the conventional Ziegler-Nichols method of PID tuning controller to demonstrate its advantage. The analysis reveals the effectiveness of the proposed PSO based PID controller.

Sources of Water Supply and Water Quality for Local Consumption: The Case Study of Eco-Tourism Village, Suan Luang Sub- District Municipality, Ampawa District, Samut Songkram Province, Thailand

The aim of this research paper was based on an examination of sources of water supply and water quality for local consumption, conducted at eco- tourism villages of Suan Luang Sub- District Municipality of Amphawa District, Samut Songkram Province. The study incorporated both questionnaire and field work of water testing as the research tool and method. The sample size of 288 households was based on the population of the district, whereas the selected sample water sources were from 60 households: 30 samples were ground water and another 30 were surface water. Degree of heavy metal contamination in the water including copper, iron, manganese, zinc, cadmium and lead was investigated utilizing the Atomic Absorption- Direct Aspiration method. The findings unveiled that 96.0 percent of household water consumption was based on water supply, while the rest on canal, river and rain water. The household behavior of consumption revealed that 47.2 percent of people routinely consumed water without boiling or filtering prior to consumption. The investigation of water supply quality found that the degree of heavy metal contamination including metal, lead, iron, copper, manganese and cadmium met the standards of the Department of Health.

Dynamic Stall Vortex Formation of OA-209 Airfoil at Low Reynolds Number

The unsteady flow field around oscillating OA-209 airfoil at a Reynolds number of 3.5×105 were investigated. Three different reduced frequencies were tested in order to see how it affects the hysteresis loop of an airfoil. At a reduced frequency of 0.05 the deep dynamic stall phenomenon was observed. Lift overshooting was observed as a result of dynamic stall vortex (DSV) shedding. Further investigation was carried out to find out the cause of DSV formation and shedding over airfoil. Particle image velocimetry (PIV) and CFD tools were used and it was found out that dynamic stall separation (DSS), which is separated from leading edge separation (LES) and trailing edge separation (TES), triggered the dynamic stall vortex (DSV).

Validation of SWAT Model for Prediction of Water Yield and Water Balance: Case Study of Upstream Catchment of Jebba Dam in Nigeria

Estimation of water yield and water balance in a river catchment is critical to the sustainable management of water resources at watershed level in any country. Therefore, in the present study, Soil and Water Assessment Tool (SWAT) interfaced with Geographical Information System (GIS) was applied as a tool to predict water balance and water yield of a catchment area in Nigeria. The catchment area, which was 12,992km2, is located upstream Jebba hydropower dam in North central part of Nigeria. In this study, data on the observed flow were collected and compared with simulated flow using SWAT. The correlation between the two data sets was evaluated using statistical measures, such as, Nasch-Sucliffe Efficiency (NSE) and coefficient of determination (R2). The model output shows a good agreement between the observed flow and simulated flow as indicated by NSE and R2, which were greater than 0.7 for both calibration and validation period. A total of 42,733 mm of water was predicted by the calibrated model as the water yield potential of the basin for a simulation period between 1985 to 2010. This interesting performance obtained with SWAT model suggests that SWAT model could be a promising tool to predict water balance and water yield in sustainable management of water resources. In addition, SWAT could be applied to other water resources in other basins in Nigeria as a decision support tool for sustainable water management in Nigeria.

Improvement of Salt Tolerance in Saudi Arabian Wheat by Seed Priming or Foliar Spray with Salicylic Acid

The effect of exogenous application; seed priming or foliar spraying of salicylic acid (SA) on Yecora Rojo and Paragon wheat cv. under NaCl-salinity. Gas exchange parameters, growth parameters, yield and yield components were reduced in both cultivars under salinity stress with foliar spray and soaking seeds. Exogenous application of SA through foliar spraying or seed soaking showed a slight increases or decreases with the application method or between cultivars. SA foliar spraying exhibited a slight improvement over SA seed soaking in most parameters, particularly in Paragon. Although, seed soaking was less effective than foliar spraying, it was a slightly better with Yecora Rojo in some parameters. However, the low SA concentration; 0.5mM tended to improve most parameters in both cultivars. From data of the experiment, it has been concluded that the effect of SA depends on cultivar genotype and SA concentration.

Determination of Some Agricultural Characters of Chickpea (Cicer arietinum L.) Genotypes

This research was made during the 2011 and 2012 growing periods in the trial filed of "Research Station for Management of Soil Water and Desertification" according to “Randomized Blocks Design” with 3 replications. Research material was the following chickpea genotype; CA119, CA128, CA149, CA150, CA222, CA250, CA254 and other 2 commercial varieties named as Gökçe and Yaşa. Some agronomical characteristics such as plant height (cm), number of pod per plant, number of seed per pod, number of seed per plant, 1000 seed weight (g) and seed yield (kg ha-1) were determined. Statistically significant variations were found amongst the genotypes for all variables except seeds per pod. Means of the two years showed the range for plant height was from 52.83cm (Gökçe) to 73.00cm (CA150), number of pod per plant was from 14.00 (CA149) to 26.83 (CA261), number of seed per pod was from 1.10 (Gökçe) to 1.19 (CA149 and CA250), number of seed per plant was from 16.28 (CA149) to 31.65 (CA261), 1000 seed weight was from 295.85g (CA149) to 437.80g (CA261) and seed yield was from 1342.73 kg ha-1 (CA261) to 2161.50 kg ha-1 (CA128). Results of the research implicated that the new developed lines were superior compared with the control (commercial) varieties by means of most of the characteristics.