Socio-Spatial Resilience Strategic Planning Through Understanding Strategic Perspectives on Tehran and Bath

Planning community has been long discussing emerging paradigms within the planning theory in the face of the changing conditions of the world order. The paradigm shift concept was introduced by Thomas Kuhn, in 1960, who claimed the necessity of shifting within scientific knowledge boundaries; and following him in 1970 Imre Loktas also gave priority to the emergence of multi-paradigm societies [24]. Multi-paradigm is changing our predetermined lifeworld through uncertainties. Those uncertainties are reflected in two sides, the first one is uncertainty as a concept of possibility and creativity in public sphere and the second one is uncertainty as a risk. Therefore, it is necessary to apply a resilience planning approach to be more dynamic in controlling uncertainties which have the potential to transfigure present time and space definitions. In this way, stability of system can be achieved. Uncertainty is not only an outcome of worldwide changes but also a place-specific issue, i.e. it changes from continent to continent, a country to country; a region to region. Therefore, applying strategic spatial planning with respect to resilience principle contributes to: control, grasp and internalize uncertainties through place-specific strategies. In today-s fast changing world, planning system should follow strategic spatial projects to control multi-paradigm societies with adaptability capacities. Here, we have selected two alternatives to demonstrate; these are; 1.Tehran (Iran) from the Middle East 2.Bath (United Kingdom) from Europe. The study elaborates uncertainties and particularities in their strategic spatial planning processes in a comparative manner. Through the comparison, the study aims at assessing place-specific priorities in strategic planning. The approach is to a two-way stream, where the case cities from the extreme end of the spectrum can learn from each other. The structure of this paper is to firstly compare semi-periphery (Tehran) and coreperiphery (Bath) cities, with the focus to reveal how they equip to face with uncertainties according to their geographical locations and local particularities. Secondly, the key message to address is “Each locality requires its own strategic planning approach to be resilient.--

A Study of Gaps in CBMIR Using Different Methods and Prospective

In recent years, rapid advances in software and hardware in the field of information technology along with a digital imaging revolution in the medical domain facilitate the generation and storage of large collections of images by hospitals and clinics. To search these large image collections effectively and efficiently poses significant technical challenges, and it raises the necessity of constructing intelligent retrieval systems. Content-based Image Retrieval (CBIR) consists of retrieving the most visually similar images to a given query image from a database of images[5]. Medical CBIR (content-based image retrieval) applications pose unique challenges but at the same time offer many new opportunities. On one hand, while one can easily understand news or sports videos, a medical image is often completely incomprehensible to untrained eyes.

Re-Handling Operations in Small Container Terminal Operated by Reach Stackers

In this paper an average number of re-handlings analysis is proposed to solve the problem of finding bays configuration in small container terminal in Gliwice, Poland. Rehandlings in this terminal can be performed only by reachstackers. The goal of the heuristic is to plan the reachstacter moves in the terminal, assuming that the target containers are reached and the number of re-handings is minimized. The real situation requires also to take into account the model of the problem environment uncertainty caused by the fact that many containers are not delivered to the terminal on time, or can not be sent on scheduled time. To enable this, the heuristic uses some assumptions to simplify problem analysis.

Rational Chebyshev Tau Method for Solving Natural Convection of Darcian Fluid About a Vertical Full Cone Embedded in Porous Media Whit a Prescribed Wall Temperature

The problem of natural convection about a cone embedded in a porous medium at local Rayleigh numbers based on the boundary layer approximation and the Darcy-s law have been studied before. Similarity solutions for a full cone with the prescribed wall temperature or surface heat flux boundary conditions which is the power function of distance from the vertex of the inverted cone give us a third-order nonlinear differential equation. In this paper, an approximate method for solving higher-order ordinary differential equations is proposed. The approach is based on a rational Chebyshev Tau (RCT) method. The operational matrices of the derivative and product of rational Chebyshev (RC) functions are presented. These matrices together with the Tau method are utilized to reduce the solution of the higher-order ordinary differential equations to the solution of a system of algebraic equations. We also present the comparison of this work with others and show that the present method is applicable.

An Efficient Technique for EMI Mitigation in Fluorescent Lamps using Frequency Modulation and Evolutionary Programming

Electromagnetic interference (EMI) is one of the serious problems in most electrical and electronic appliances including fluorescent lamps. The electronic ballast used to regulate the power flow through the lamp is the major cause for EMI. The interference is because of the high frequency switching operation of the ballast. Formerly, some EMI mitigation techniques were in practice, but they were not satisfactory because of the hardware complexity in the circuit design, increased parasitic components and power consumption and so on. The majority of the researchers have their spotlight only on EMI mitigation without considering the other constraints such as cost, effective operation of the equipment etc. In this paper, we propose a technique for EMI mitigation in fluorescent lamps by integrating Frequency Modulation and Evolutionary Programming. By the Frequency Modulation technique, the switching at a single central frequency is extended to a range of frequencies, and so, the power is distributed throughout the range of frequencies leading to EMI mitigation. But in order to meet the operating frequency of the ballast and the operating power of the fluorescent lamps, an optimal modulation index is necessary for Frequency Modulation. The optimal modulation index is determined using Evolutionary Programming. Thereby, the proposed technique mitigates the EMI to a satisfactory level without disturbing the operation of the fluorescent lamp.

Implementation of Generalized Plasticity in Load-Deformation Behavior of Foundation with Emphasis on Localization Problem

Nonlinear finite element method with eight noded isoparametric quadrilateral element is used for prediction of loaddeformation behavior including bearing capacity of foundations. Modified generalized plasticity model with non-associated flow rule is applied for analysis of soil-footing system. Also Von Mises and Tresca criterions are used for simulation of soil behavior. Modified generalized plasticity model is able to simulate load-deformation including softening behavior. Localization phenomena are considered by different meshes. Localization phenomena have not been seen in the examples. Predictions by modified generalized plasticity model show good agreement with laboratory data and theoretical prediction in comparison the other models.

A Copyright Protection Scheme for Color Images using Secret Sharing and Wavelet Transform

This paper proposes a copyright protection scheme for color images using secret sharing and wavelet transform. The scheme contains two phases: the share image generation phase and the watermark retrieval phase. In the generation phase, the proposed scheme first converts the image into the YCbCr color space and creates a special sampling plane from the color space. Next, the scheme extracts the features from the sampling plane using the discrete wavelet transform. Then, the scheme employs the features and the watermark to generate a principal share image. In the retrieval phase, an expanded watermark is first reconstructed using the features of the suspect image and the principal share image. Next, the scheme reduces the additional noise to obtain the recovered watermark, which is then verified against the original watermark to examine the copyright. The experimental results show that the proposed scheme can resist several attacks such as JPEG compression, blurring, sharpening, noise addition, and cropping. The accuracy rates are all higher than 97%.

Tool Failure Detection Based on Statistical Analysis of Metal Cutting Acoustic Emission Signals

The analysis of Acoustic Emission (AE) signal generated from metal cutting processes has often approached statistically. This is due to the stochastic nature of the emission signal as a result of factors effecting the signal from its generation through transmission and sensing. Different techniques are applied in this manner, each of which is suitable for certain processes. In metal cutting where the emission generated by the deformation process is rather continuous, an appropriate method for analysing the AE signal based on the root mean square (RMS) of the signal is often used and is suitable for use with the conventional signal processing systems. The aim of this paper is to set a strategy in tool failure detection in turning processes via the statistic analysis of the AE generated from the cutting zone. The strategy is based on the investigation of the distribution moments of the AE signal at predetermined sampling. The skews and kurtosis of these distributions are the key elements in the detection. A normal (Gaussian) distribution has first been suggested then this was eliminated due to insufficiency. The so called Beta distribution was then considered, this has been used with an assumed β density function and has given promising results with regard to chipping and tool breakage detection.

Compression and Filtering of Random Signals under Constraint of Variable Memory

We study a new technique for optimal data compression subject to conditions of causality and different types of memory. The technique is based on the assumption that some information about compressed data can be obtained from a solution of the associated problem without constraints of causality and memory. This allows us to consider two separate problem related to compression and decompression subject to those constraints. Their solutions are given and the analysis of the associated errors is provided.

Hardiness vs Alienation Personality Construct Essentially Explains Burnout Proclivity and Erroneous Computer Entry Problems in Rural Hellenic Hospital Labs

Erroneous computer entry problems [here: 'e'errors] in hospital labs threaten the patients-–health carers- relationship, undermining the health system credibility. Are e-errors random, and do lab professionals make them accidentally, or may they be traced through meaningful determinants? Theories on internal causality of mistakes compel to seek specific causal ascriptions of hospital lab eerrors instead of accepting some inescapability. Undeniably, 'To Err is Human'. But in view of rapid global health organizational changes, e-errors are too expensive to lack in-depth considerations. Yet, that efunction might supposedly be entrenched in the health carers- job description remains under dispute – at least for Hellenic labs, where e-use falls behind generalized(able) appreciation and application. In this study: i) an empirical basis of a truly high annual cost of e-errors at about €498,000.00 per rural Hellenic hospital was established, hence interest in exploring the issue was sufficiently substantiated; ii) a sample of 270 lab-expert nurses, technicians and doctors were assessed on several personality, burnout and e-error measures, and iii) the hypothesis that the Hardiness vs Alienation personality construct disposition explains resistance vs proclivity to e-errors was tested and verified: Hardiness operates as a resilience source in the encounter of high pressures experienced in the hospital lab, whereas its 'opposite', i.e., Alienation, functions as a predictor, not only of making e-errors, but also of leading to burn-out. Implications for apt interventions are discussed.

Adsorption of Textile Reactive Dye by Palm Shell Activated Carbon: Response Surface Methodology

The adsorption of simulated aqueous solution containing textile remazol reactive dye, namely Red 3BS by palm shell activated carbon (PSAC) as adsorbent was carried out using Response Surface Methodology (RSM). A Box-Behnken design in three most important operating variables; initial dye concentration, dosage of adsorbent and speed of impeller was employed for experimental design and optimization of results. The significance of independent variables and their interactions were tested by means of the analysis of variance (ANOVA) with 95% confidence limits. Model indicated that with the increasing of dosage and speed give the result of removal up to 90% with the capacity uptake more than 7 mg/g. High regression coefficient between the variables and the response (R-Sq = 93.9%) showed of good evaluation of experimental data by polynomial regression model.

Biodiesel from Coconut Oil: A Renewable Alternative Fuel for Diesel Engine

With the growth of modern civilization and industrialization in worldwide, the demand for energy is increasing day by day. Majority of the world-s energy needs are met through fossil fuels and natural gas. As a result the amount of fossil fuels is on diminishing from year to year. Since the fossil fuel is nonrenewable, so fuel price is gouging as a consequence of spiraling demand and diminishing supply. At present the power generation of our country is mainly depends on imported fossil fuels. To reduce the dependency on imported fuel, the use of renewable sources has become more popular. In Bangladesh coconut is widely growing tree. Especially in the southern part of the country a large area will be found where coconut tree is considered as natural asset. So, our endeavor was to use the coconut oil as a renewable and alternative fuel. This article shows the prospect of coconut oil as a renewable and alternative fuel of diesel fuel. Since diesel engine has a versatile uses including small electricity generation, an experimental set up is then made to study the performance of a small diesel engine using different blends of bio diesel converted from coconut oil. It is found that bio diesel has slightly different properties than diesel. With biodiesel the engine is capable of running without difficulty. Different blends of bio diesel (i.e. B80, B60, and B 50 etc.) have been used to avoid complicated modification of the engine or the fuel supply system. Finally, a comparison of engine performance for different blends of biodiesel has been carried out to determine the optimum blend for different operating conditions.

Size Controlled Synthesis and Photocatalytic Activity of Anatase TiO2 Hollow Microspheres

Titanium oxide hollow microspheres were synthesized from organic precursor titanium tetraisopropoxide (TTIP) using continuous spray pyrolysis reactor. Effects of precursor concentration, applied voltage and annealing have been investigated. It was observed that the annealing of the as-synthesized TiO2 hollow microspheres at 2500C, which had an average external diameter of 200 nm, leads to an increase in the size and also more spherical shape. The precursor concentration was found to have a direct impact on the size of the microspheres, which is also evident in the absorption spectrum. The as-prepared TiO2 hollow microspheres exhibited good photocatalytic activity for the degradation of MO.

Producing New Composite Materials by Using Tragacanth and Waste Ash

In present study, two kinds of thermal power plant ashes; one the fly ash and the other waste ash are mixed with adhesive tragacanth and cement to produce new composite materials. 48 new samples are produced by varying the percentages of the fly ash, waste ash, cement and tragacanth. The new samples are subjected to some tests to find out their properties such as thermal conductivity, compressive strength, tensile strength and sucking capability of water. It is found that; the thermal conductivity decreases with increasing amount of tragacanth in the mixture. The compressive, tensile strength increases when the rate of tragacanth is up to 1%, whilst as the amount of tragacanth increases up to 1.5%, the compressive, tensile strength decreases slightly. The rate of water absorption of samples was more than 30%. From this result, it is concluded that these materials can not be used as external plaster or internal plaster material that faces to water. They can be used in internal plaster unless touching water and they can be used as cover plaster under roof and riprap material in sandwich panels. It is also found that, these materials can be cut with saw, drilled with screw and painted with any kind of paint.

The Possibility-Probability Relationship for Bloodstream Concentrations of Physiologically Active Substances

If a possibility distribution and a probability distribution are describing values x of one and the same system or process x(t), can they relate to each other? Though in general the possibility and probability distributions might be not connected at all, we can assume that in some particular cases there is an association linked them. In the presented paper, we consider distributions of bloodstream concentrations of physiologically active substances and propose that the probability to observe a concentration x of a substance X can be produced from the possibility of the event X = x . The proposed assumptions and resulted theoretical distributions are tested against the data obtained from various panel studies of the bloodstream concentrations of the different physiologically active substances in patients and healthy adults as well.

A Proposed Managerial Framework for International Marketing Operations in the Fast Food Industry

When choosing marketing strategies for international markets, one of the factors that should be considered is the cultural differences that exist among consumers in different countries. If the branding strategy has to be contextual and in tune with the culture, then the brand positioning variables has to interact, adapt and respond to the cultural variables in which the brand is operating. This study provides an overview of the relevance of culture in the development of an effective branding strategy in the international business environment. Hence, the main objective of this study is to provide a managerial framework for developing strategies for cross cultural brand management. The framework is useful because it incorporates the variables that are important in the competitiveness of fast food enterprises irrespective of their size. It provides practical, proactive and result oriented analysis that will help fast food firms augment their strategies in the international fast food markets. The proposed framework will enable managers understand the intricacies involved in branding in the global fast food industry and decrease the use of 'trial and error' when entering into unfamiliar markets.

Momentum and Heat Transfer in the Flow of a Viscoelastic Fluid Past a Porous Flat Plate Subject to Suction or Blowing

An analysis is made of the flow of an incompressible viscoelastic fluid (of small memory) over a porous plate subject to suction or blowing. It is found that velocity at a point increases with increase in the elasticity in the fluid. It is also shown that wall shear stress depends only on suction and is also independent of the material of fluids. No steady solution for velocity distribution exists when there is blowing at the plate. Temperature distribution in the boundary layer is determined and it is found that temperature at a point decreases with increase in the elasticity in the fluid.

Effect of Humic Acid on Physical and Engineering Properties of Lime-Treated Organic Clay

The present work deals with the stabilisation of organic clay using hydrated lime. Artificial organic clays were prepared by adding kaolin and different humic acid contents. Results given by physical testing show that the presence of humic acid has a drawback effect on the untreated organic clay. The decrease in specific gravity value was accompanied by a decrease in dry density and plasticity of clay at higher humic acid contents. Significant increase in shear strength at 7 days of curing period is observed in the lime-treated samples up to 5% lime content. However shear strength of lime-treated organic clay decreases at longer curing periods. The results given by laboratory testing is further verified by microstructure analysis. Based on the results obtained in this study, it can be concluded that the presence of more than 1.5% humic acid reduces significantly the efficiency of lime stabilization in organic clays.

Predicting Radiative Heat Transfer in Arbitrary Two and Three-Dimensional Participating Media

The radiative exchange method is introduced as a numerical method for the simulation of radiative heat transfer in an absorbing, emitting and isotropically scattering media. In this method, the integro-differential radiative balance equation is solved by using a new introduced concept for the exchange factor. Even though the radiative source term is calculated in a mesh structure that is coarser than the structure used in computational fluid dynamics, calculating the exchange factor between different coarse elements by using differential integration elements makes the result of the method close to that of integro-differential radiative equation. A set of equations for calculating exchange factors in two and threedimensional Cartesian coordinate system is presented, and the method is used in the simulation of radiative heat transfer in twodimensional rectangular case and a three-dimensional simple cube. The result of using this method in simulating different cases is verified by comparing them with those of using other numerical radiative models.

Model and Control of Renewable Energy Systems

This paper presents a developed method for controlling multi-renewable energy generators. The control system depends basically on three sensors (wind anemometer, solar sensor, and voltage sensor). These sensors represent PLC-s analogue inputs. Controlling the output voltage supply can be achieved by an enhanced method of interlocking between the renewable energy generators, depending on those sensors and output contactors.