Dynamics In Production Processes

An increasingly dynamic and complex environment poses huge challenges to production enterprises, especially with regards to logistics. The Logistic Operating Curve Theory, developed at the Institute of Production Systems and Logistics (IFA) of the Leibniz University of Hanover, is a recognized approach to describing logistic interactions, nevertheless, it reaches its limits when it comes to the dynamic aspects. In order to facilitate a timely and optimal Logistic Positioning a method is developed for quickly and reliably identifying dynamic processing states.

Nuclear Medical Image Treatment System Based On FPGA in Real Time

We present in this paper an acquisition and treatment system designed for semi-analog Gamma-camera. It consists of a nuclear medical Image Acquisition, Treatment and Display chain(IATD) ensuring the acquisition, the treatment of the signals(resulting from the Gamma-camera detection head) and the scintigraphic image construction in real time. This chain is composed by an analog treatment board and a digital treatment board. We describe the designed systems and the digital treatment algorithms in which we have improved the performance and the flexibility. The digital treatment algorithms are implemented in a specific reprogrammable circuit FPGA (Field Programmable Gate Array).interface for semi-analog cameras of Sopha Medical Vision(SMVi) by taking as example SOPHY DS7. The developed system consists of an Image Acquisition, Treatment and Display (IATD) ensuring the acquisition and the treatment of the signals resulting from the DH. The developed chain is formed by a treatment analog board and a digital treatment board designed around a DSP [2]. In this paper we have presented the architecture of a new version of our chain IATD in which the integration of the treatment algorithms is executed on an FPGA (Field Programmable Gate Array)

Amberlite XAD-4 Functionalized with 1-amino-2-naphthole for Determination and Preconcentration of Copper (II) in Aqueous Solution by Flame Atomic Absorption Spectrometry

A new chelating resin is prepared by coupling Amberlite XAD-4 with 1-amino-2-naphthole through an azo spacer. The resulting sorbent has been characterized by FT-IR, elemental analysis and thermogravimetric analysis (TGA) and studied for preconcentrating of Cu (II) using flame atomic absorption spectrometry (FAAS) for metal monitoring. The optimum pH value for sorption of the copper ions was 6.5. The resin was subjected to evaluation through batch binding of mentioned metal ion. Quantitative desorption occurs instantaneously with 0.5 M HNO3. The sorption capacity was found 4.8 mmol.g-1 of resin for Cu (II) in the aqueous solution. The chelating resin can be reused for 10 cycles of sorption-desorption without any significant change in sorption capacity. A recovery of 99% was obtained the metal ions with 0.5 M HNO3 as eluting agent. The method was applied for metal ions determination from industrial waste water sample.

Palmprint Recognition by Wavelet Transform with Competitive Index and PCA

This manuscript presents, palmprint recognition by combining different texture extraction approaches with high accuracy. The Region of Interest (ROI) is decomposed into different frequencytime sub-bands by wavelet transform up-to two levels and only the approximate image of two levels is selected, which is known as Approximate Image ROI (AIROI). This AIROI has information of principal lines of the palm. The Competitive Index is used as the features of the palmprint, in which six Gabor filters of different orientations convolve with the palmprint image to extract the orientation information from the image. The winner-take-all strategy is used to select dominant orientation for each pixel, which is known as Competitive Index. Further, PCA is applied to select highly uncorrelated Competitive Index features, to reduce the dimensions of the feature vector, and to project the features on Eigen space. The similarity of two palmprints is measured by the Euclidean distance metrics. The algorithm is tested on Hong Kong PolyU palmprint database. Different AIROI of different wavelet filter families are also tested with the Competitive Index and PCA. AIROI of db7 wavelet filter achievs Equal Error Rate (EER) of 0.0152% and Genuine Acceptance Rate (GAR) of 99.67% on the palm database of Hong Kong PolyU.

Learners- Perceptions of Mobile Devices for Learning in Higher Education - Towards a Mobile Learning Pedagogical Framework

The dramatic effect of information technology on society is undeniable. In education, it is evident in the use of terms like active learning, blended learning, electronic learning and mobile learning (ubiquitous learning). This study explores the perceptions of 54 learners in a higher education institution regarding the use of mobile devices in a third year module. Using semi-structured interviews, it was found that mobile devices had a positive impact on learner motivation, engagement and enjoyment. It also improved the consistency of learning material, and the convenience and flexibility (anywhere, anytime) of learning. User-interfacelimitation, bandwidth and cognitive overload, however, were of concern. The use of cloud based resources like Youtube and Google Docs, through mobile devices, positively influenced learner perceptions, making them prosumers (both consumers and producers) of education content.

Numerical Evaluation of the Aerodynamic Efficiency of the Stevens and Jolly Vertical- Axis Windmill (1895)

This paper presents a numerical investigation of the unsteady flow around an American 19th century vertical-axis windmill: the Stevens & Jolly rotor, patented on April 16, 1895. The computational approach used is based on solving the complete transient Reynolds-Averaged Navier-Stokes (t-RANS) equations: a full campaign of numerical simulation has been performed using the k-ω SST turbulence model. Flow field characteristics have been investigated for several values of tip speed ratio and for a constant unperturbed free-stream wind velocity of 6 m/s, enabling the study of some unsteady flow phenomena in the rotor wake. Finally, the global power generated from the windmill has been determined for each simulated angular velocity, allowing the calculation of the rotor power-curve.

Energy Supply, Demand and Environmental Analysis – A Case Study of Indian Energy Scenario

Increasing concerns over climate change have limited the liberal usage of available energy technology options. India faces a formidable challenge to meet its energy needs and provide adequate energy of desired quality in various forms to users in sustainable manner at reasonable costs. In this paper, work carried out with an objective to study the role of various energy technology options under different scenarios namely base line scenario, high nuclear scenario, high renewable scenario, low growth and high growth rate scenario. The study has been carried out using Model for Energy Supply Strategy Alternatives and their General Environmental Impacts (MESSAGE) model which evaluates the alternative energy supply strategies with user defined constraints on fuel availability, environmental regulations etc. The projected electricity demand, at the end of study period i.e. 2035 is 500490 MWYr. The model predicted the share of the demand by Thermal: 428170 MWYr, Hydro: 40320 MWYr, Nuclear: 14000 MWYr, Wind: 18000 MWYr in the base line scenario. Coal remains the dominant fuel for production of electricity during the study period. However, the import dependency of coal increased during the study period. In baseline scenario the cumulative carbon dioxide emissions upto 2035 are about 11,000 million tones of CO2. In the scenario of high nuclear capacity the carbon dioxide emissions reduced by 10 % when nuclear energy share increased to 9 % compared to 3 % in baseline scenario. Similarly aggressive use of renewables reduces 4 % of carbon dioxide emissions.

Speed Control of a Permanent Magnet Synchronous Machine (PMSM) Fed by an Inverter Voltage Fuzzy Control Approach

This paper deals with the synthesis of fuzzy controller applied to a permanent magnet synchronous machine (PMSM) with a guaranteed H∞ performance. To design this fuzzy controller, nonlinear model of the PMSM is approximated by Takagi-Sugeno fuzzy model (T-S fuzzy model), then the so-called parallel distributed compensation (PDC) is employed. Next, we derive the property of the H∞ norm. The latter is cast in terms of linear matrix inequalities (LMI-s) while minimizing the H∞ norm of the transfer function between the disturbance and the error ( ) ev T . The experimental and simulations results were conducted on a permanent magnet synchronous machine to illustrate the effects of the fuzzy modelling and the controller design via the PDC.

A Martingale Residual Diagnostic for Logistic Regression Model

Martingale model diagnostic for assessing the fit of logistic regression model to recurrent events data are studied. One way of assessing the fit is by plotting the empirical standard deviation of the standardized martingale residual processes. Here we used another diagnostic plot based on martingale residual covariance. We investigated the plot performance under several types of model misspecification. Clearly the method has correctly picked up the wrong model. Also we present a test statistic that supplement the inspection of the two diagnostic. The test statistic power agrees with what we have seen in the plots of the estimated martingale covariance.

High Order Cascade Multibit ΣΔ Modulator for Wide Bandwidth Applications

A wideband 2-1-1 cascaded ΣΔ modulator with a single-bit quantizer in the two first stages and a 4-bit quantizer in the final stage is developed. To reduce sensitivity of digital-to-analog converter (DAC) nonlinearities in the feedback of the last stage, dynamic element matching (DEM) is introduced. This paper presents two modelling approaches: The first is MATLAB description and the second is VHDL-AMS modelling of the proposed architecture and exposes some high-level-simulation results allowing a behavioural study. The detail of both ideal and non-ideal behaviour modelling are presented. Then, the study of the effect of building blocks nonidealities is presented; especially the influences of nonlinearity, finite operational amplifier gain, amplifier slew rate limitation and capacitor mismatch. A VHDL-AMS description presents a good solution to predict system-s performances and can provide sensitivity curves giving the impact of nonidealities on the system performance.

Necessity of using an Optimum Business Model in High-Tech Firms, Nanotechnology Case Study

In the way of growing and developing firms especially high-tech firms, on many occasions manager of firm is mainly involved in solving problems of his business and decision making about executive activities of the firm, while besides executive measures, attention to planning of firm's success and growth way and application of long experience and sagacity in designing business model are vital and necessary success in a business is achieved as a result of different factors, one of the most important of them is designing and performing an optimal business model at the beginning of the firm's work. This model is determining the limit of profitability achieved by innovation and gained value added. Therefore, business model is the process of connecting innovation environment and technology with economic environment and business and is important for succeeding modern businesses considering their traits.

Simulation Study of Radial Heat and Mass Transfer Inside a Fixed Bed Catalytic Reactor

A rigorous two-dimensional model is developed for simulating the operation of a less-investigated type steam reformer having a considerably lower operating Reynolds number, higher tube diameter, and non-availability of extra steam in the feed compared with conventional steam reformers. Simulation results show that reasonable predictions can only be achieved when certain correlations for wall to fluid heat transfer equations are applied. Due to severe operating conditions, in all cases, strong radial temperature gradients inside the reformer tubes have been found. Furthermore, the results show how a certain catalyst loading profile will affect the operation of the reformer.

Antioxydant and Antibacterial Activity of Alkaloids and Terpenes Extracts from Euphorbia granulata

In order to enhance the knowledge of certain phytochemical Algerian plants that are widely used in traditional medicine and to exploit their therapeutic potential in modern medicine, we have done a specific extraction of terpenes and alkaloids from the leaves of Euphorbia granulata to evaluate the antioxidant and antibacterial activity of this extracts. After the extraction it was found that the terpene extract gave the highest yield 59.72% compared with alkaloids extracts. The disc diffusion method was used to determine the antibacterial activity against different bacterial strains: Escherichia coli (ATCC25922), Pseudomonas aeruginosa (ATCC27853) and Staphylococcus aureus (ATCC25923). All extracts have shown inhibition of growth bacteria. The different zones of inhibition have varied from (7 -10 mm) according to the concentrations of extract used. Testing the antiradical activity on DPPH-TLC plates indicated the presence of substances that have potent anti-free radical. As against, the BC-TLC revealed that only terpenes extract which was reacted positively. These results can validate the importance of Euphorbia granulata in traditional medicine.

Classification of Defects by the SVM Method and the Principal Component Analysis (PCA)

Analyses carried out on examples of detected defects echoes showed clearly that one can describe these detected forms according to a whole of characteristic parameters in order to be able to make discrimination between a planar defect and a volumic defect. This work answers to a problem of ultrasonics NDT like Identification of the defects. The problems as well as the objective of this realized work, are divided in three parts: Extractions of the parameters of wavelets from the ultrasonic echo of the detected defect - the second part is devoted to principal components analysis (PCA) for optimization of the attributes vector. And finally to establish the algorithm of classification (SVM, Support Vector Machine) which allows discrimination between a plane defect and a volumic defect. We have completed this work by a conclusion where we draw up a summary of the completed works, as well as the robustness of the various algorithms proposed in this study.

A Centroid Ranking Approach Based Fuzzy MCDM Model

This paper suggests ranking alternatives under fuzzy MCDM (multiple criteria decision making) via an centroid based ranking approach, where criteria are classified to benefit qualitative, benefit quantitative and cost quantitative ones. The ratings of alternatives versus qualitative criteria and the importance weights of all criteria are assessed in linguistic values represented by fuzzy numbers. The membership function for the final fuzzy evaluation value of each alternative can be developed through α-cuts and interval arithmetic of fuzzy numbers. The distance between the original point and the relative centroid is applied to defuzzify the final fuzzy evaluation values in order to rank alternatives. Finally a numerical example demonstrates the computation procedure of the proposed model.

Evaluation of Horizontal Seismic Hazard of Naghan, Iran

This paper presents probabilistic horizontal seismic hazard assessment of Naghan, Iran. It displays the probabilistic estimate of Peak Ground Horizontal Acceleration (PGHA) for the return period of 475, 950 and 2475 years. The output of the probabilistic seismic hazard analysis is based on peak ground acceleration (PGA), which is the most common criterion in designing of buildings. A catalogue of seismic events that includes both historical and instrumental events was developed and covers the period from 840 to 2009. The seismic sources that affect the hazard in Naghan were identified within the radius of 200 km and the recurrence relationships of these sources were generated by Kijko and Sellevoll. Finally Peak Ground Horizontal Acceleration (PGHA) has been prepared to indicate the earthquake hazard of Naghan for different hazard levels by using SEISRISK III software.

Predicting Dietary Practice Behavior among Type 2 Diabetics Using the Theory of Planned Behavior and Mixed Methods Design

This study applied the Theory of Planned Behavior model in predicting dietary behavior among Type 2 diabetics in a Kenyan environment. The study was conducted for three months within the diabetic clinic at Kisii Hospital in Nyanza Province in Kenya and adopted sequential mixed methods design combing both qualitative and quantitative phases. Qualitative data was analyzed using grounded theory analysis method. Structural equation modeling using maximum likelihood was used to analyze quantitative data. The results based on the common fit indices revealed that the theory of planned behavior fitted the data acceptably well among the Type 2 diabetes and within dietary behavior {χ2 = 223.3, df = 77, p = .02, χ2/df = 2.9, n=237; TLI = .93; CFI =.91; RMSEA (90CI) = .090(.039, .146)}. This implies that the Theory of Planned Behavior holds and forms a framework for promoting dietary practice among Type 2 diabetics.

Assessing drought Vulnerability of Bulgarian Agriculture through Model Simulations

This study assesses the vulnerability of Bulgarian agriculture to drought using the WINISAREG model and seasonal standard precipitation index SPI(2) for the period 1951-2004. This model was previously validated for maize on soils of different water holding capacity (TAW) in various locations. Simulations are performed for Plovdiv, Stara Zagora and Sofia. Results relative to Plovdiv show that in soils of large TAW (180 mm m-1) net irrigation requirements (NIRs) range 0-40 mm in wet years and 350-380 mm in dry years. In soils of small TAW (116 mm m-1), NIRs reach 440 mm in the very dry year. NIRs in Sofia are about 80 mm smaller. Rainfed maize is associated with great yield variability (29%

Hybrid Prefix Adder Architecture for Minimizing the Power Delay Product

Parallel Prefix addition is a technique for improving the speed of binary addition. Due to continuing integrating intensity and the growing needs of portable devices, low-power and highperformance designs are of prime importance. The classical parallel prefix adder structures presented in the literature over the years optimize for logic depth, area, fan-out and interconnect count of logic circuits. In this paper, a new architecture for performing 8-bit, 16-bit and 32-bit Parallel Prefix addition is proposed. The proposed prefix adder structures is compared with several classical adders of same bit width in terms of power, delay and number of computational nodes. The results reveal that the proposed structures have the least power delay product when compared with its peer existing Prefix adder structures. Tanner EDA tool was used for simulating the adder designs in the TSMC 180 nm and TSMC 130 nm technologies.

Numerical Simulation of Progressive Collapse for a Reinforced Concrete Building

Though nonlinear dynamic analysis using a specialized hydro-code such as AUTODYN is accurate and useful tool for progressive collapse assessment of a multi-story building subjected to blast load, it takes too much time to be applied to a practical simulation of progressive collapse of a tall building. In this paper, blast analysis of a RC frame structure using a simplified model with Reinforcement Contact technique provided in Ansys Workbench was introduced and investigated on its accuracy. Even though the simplified model has a fraction of elements of the detailed model, the simplified model with this modeling technique shows similar structural behavior under the blast load to the detailed model. The proposed modeling method can be effectively applied to blast loading progressive collapse analysis of a RC frame structure.