Chase Trainer Exercise Program in Athlete with Unilateral Patellofemoral Pain Syndrome (PFPS)

We investigated the effects of modified preprogrammed training mode Chase Trainer from Balance Trainer (BT3, HurLab, Tampere, Finland) on athlete who experienced unilateral Patellofemoral Pain Syndrome (PFPS). Twenty-seven athletes with mean age= 14.23 ±1.31 years, height = 164.89 ± 7.85 cm, weight = 56.94 ± 9.28 kg were randomly assigned to two groups: experiment (EG; n = 14) and injured (IG; n = 13). EG performed a series of Chase Trainer program which required them to shift their body weight at different directions, speeds and angle of leaning twice a week for duration of 8 weeks. The static postural control and perceived pain level measures were taken at baseline, after 6 weeks and 8 weeks of training. There was no significant difference in any of tested variables between EG and IG before and after 6-week the intervention period. However, after 8-week of training, the postural control (eyes open) and perceived pain level of EG improved compared to IG (p

Flow around Two Cam Shaped Cylinders in Tandem Arrangement

In this paper flow around two cam shaped cylinders had been studied numerically. The equivalent diameter of cylinders is 27.6 mm. The space between center to center of two cam shaped cylinders is define as longitudinal pitch ratio and it varies in range of 2 varies in range of 50

Vibration Base Identification of Impact Force Using Genetic Algorithm

This paper presents the identification of the impact force acting on a simply supported beam. The force identification is an inverse problem in which the measured response of the structure is used to determine the applied force. The identification problem is formulated as an optimization problem and the genetic algorithm is utilized to solve the optimization problem. The objective function is calculated on the difference between analytical and measured responses and the decision variables are the location and magnitude of the applied force. The results from simulation show the effectiveness of the approach and its robustness vs. the measurement noise and sensor location.

Cash Flow Optimization on Synthetic CDOs

Collateralized Debt Obligations are not as widely used nowadays as they were before 2007 Subprime crisis. Nonetheless there remains an enthralling challenge to optimize cash flows associated with synthetic CDOs. A Gaussian-based model is used here in which default correlation and unconditional probabilities of default are highlighted. Then numerous simulations are performed based on this model for different scenarios in order to evaluate the associated cash flows given a specific number of defaults at different periods of time. Cash flows are not solely calculated on a single bought or sold tranche but rather on a combination of bought and sold tranches. With some assumptions, the simplex algorithm gives a way to find the maximum cash flow according to correlation of defaults and maturities. The used Gaussian model is not realistic in crisis situations. Besides present system does not handle buying or selling a portion of a tranche but only the whole tranche. However the work provides the investor with relevant elements on how to know what and when to buy and sell.

An Interactive Tool for Teaching and Learning English at Upper Primary Level for Mauritius

E-learning refers to the specific kind of learning experienced within the domain of educational technology, which can be used in or out of the classroom. In this paper, we give an overview of an e-learning platform 'An Innovative Interactive and Online English Platform for Upper Primary Students' is an interactive web-based application which will serve as an aid to the primary school students in Mauritius. The objectives of this platform are to offer quality learning resources for the English subject at our primary level of education, encourage self-learning and hence promote e-learning. The platform developed consists of several interesting features, for example, the English Verb Conjugation tool, Negative Form tool, Interrogative Form tool and Close Test Generator. Thus, this learning platform will be useful at a time where our country is looking for an alternative to private tuition and also, looking forward to increase the pass rate.

Tree-on-DAG for Data Aggregation in Sensor Networks

Computing and maintaining network structures for efficient data aggregation incurs high overhead for dynamic events where the set of nodes sensing an event changes with time. Moreover, structured approaches are sensitive to the waiting time that is used by nodes to wait for packets from their children before forwarding the packet to the sink. An optimal routing and data aggregation scheme for wireless sensor networks is proposed in this paper. We propose Tree on DAG (ToD), a semistructured approach that uses Dynamic Forwarding on an implicitly constructed structure composed of multiple shortest path trees to support network scalability. The key principle behind ToD is that adjacent nodes in a graph will have low stretch in one of these trees in ToD, thus resulting in early aggregation of packets. Based on simulations on a 2,000-node Mica2- based network, we conclude that efficient aggregation in large-scale networks can be achieved by our semistructured approach.

Impacts of Global Warming on the World Food Market According to SRES Scenarios

This research examines possible effects of climatic change focusing on global warming and its impacts on world agricultural product markets, by using a world food model developed to consider climate changes. GDP and population for each scenario were constructed by IPCC and climate data for each scenario was reported by the Hadley Center and are used in this research to consider results in different contexts. Production and consumption of primary agriculture crops of the world for each socio-economic scenario are obtained and investigated by using the modified world food model. Simulation results show that crop production in some countries or regions will have different trends depending on the context. These alternative contexts depend on the rate of GDP growth, population, temperature, and rainfall. Results suggest that the development of environment friendly technologies lead to more consumption of food in many developing countries. Relationships among environmental policy, clean energy development, and poverty elimination warrant further investigation.

Representing Shared Join Points with State Charts: A High Level Design Approach

Aspect Oriented Programming promises many advantages at programming level by incorporating the cross cutting concerns into separate units, called aspects. Join Points are distinguishing features of Aspect Oriented Programming as they define the points where core requirements and crosscutting concerns are (inter)connected. Currently, there is a problem of multiple aspects- composition at the same join point, which introduces the issues like ordering and controlling of these superimposed aspects. Dynamic strategies are required to handle these issues as early as possible. State chart is an effective modeling tool to capture dynamic behavior at high level design. This paper provides methodology to formulate the strategies for multiple aspect composition at high level, which helps to better implement these strategies at coding level. It also highlights the need of designing shared join point at high level, by providing the solutions of these issues using state chart diagrams in UML 2.0. High level design representation of shared join points also helps to implement the designed strategy in systematic way.

The Influence of Surface Potential on the Kinetics of Bovine Serum Albumin Adsorption on a Biomedical Grade 316LVM Stainless Steel Surface

Polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) in combination with electrochemistry, was employed to study the influence of surface charge (potential) on the kinetics of bovine serum albumin (BSA) adsorption on a biomedical-grade 316LVM stainless steel surface is discussed. The BSA adsorption kinetics was found to greatly depend on the surface potential. With an increase in surface potential towards more negative values, both the BSA initial adsorption rate and the equilibrium (saturated) surface concentration also increased. Both effects were explained on the basis of replacement of well-ordered water molecules at the 316LVM / solution interface, i.e. by the increase in entropy of the system.

Numerical and Experimental Investigations on Jet Impingement Cooling

Effective cooling of electronic equipment has emerged as a challenging and constraining problem of the new century. In the present work the feasibility and effectiveness of jet impingement cooling on electronics were investigated numerically and experimentally. Studies have been conducted to see the effect of the geometrical parameters such as jet diameter (D), jet to target spacing (Z) and ratio of jet spacing to jet diameter (Z/D) on the heat transfer characteristics. The values of Reynolds numbers considered are in the range 7000 to 42000. The results obtained from the numerical studies are validated by conducting experiments. From the studies it is found that the optimum value of Z/D ratio is 5. For a given Reynolds number, the Nusselt number increases by about 28% if the diameter of the nozzle is increased from 1mm to 2mm. Correlations are proposed for Nusselt number in terms of Reynolds number and these are valid for air as the cooling medium.

Numerical Simulation of the Effects of Nanofluid on a Heat Pipe Thermal Performance

This research aims at modeling and simulating the effects of nanofluids on cylindrical heat pipes thermal performance using the ANSYS-FLUENT CFD commercial software. The heat pipe outer wall temperature distribution, thermal resistance, liquid pressure and axial velocity in presence of suspended nano-scaled solid particle (i.e. Cu, Al2O3 and TiO2) within the fluid (water) were investigated. The effect of particle concentration and size were explored and it is concluded that the thermal performance of the heat pipe is improved when using nanofluid as the system working fluid. Additionally, it was observed that the thermal resistance of the heat pipe drops as the particle concentration level increases and particle radius decreases.

The Effect of Unburned Carbon on Coal Fly Ash toward its Adsorption Capacity for Methyl Violet

Coal fly ash (CFA) generated by coal-based thermal power plants is mainly composed of quartz, mullite, and unburned carbon. In this study, the effect of unburned carbon on CFA toward its adsorption capacity was investigated. CFA with various carbon content was obtained by refluxing it with sulfuric acid having various concentration at various temperature and reflux time, by heating at 400-800°C, and by sieving into 100-mesh in particle size. To evaluate the effect of unburned carbon on CFA toward its adsorption capacity, adsorption of methyl violet solution with treated CFA was carried out. The research shows that unburned carbon leads to adsorption capacity decrease. The highest adsorption capacity of treated CFA was found 5.73 x 10-4mol.g-1.

Harmonic Analysis of 240 V AC Power Supply using TMS320C6713 DSK

The presence of harmonic in power system is a major concerned to power engineers for many years. With the increasing usage of nonlinear loads in power systems, the harmonic pollution becomes more serious. One of the widely used computation algorithm for harmonic analysis is fast Fourier transform (FFT). In this paper, a harmonic analyzer using FFT was implemented on TMS320C6713 DSK. The supply voltage of 240 V 59 Hz is stepped down to 5V using a voltage divider in order to match the power rating of the DSK input. The output from the DSK was displayed on oscilloscope and Code Composer Studio™ software. This work has demonstrated the possibility of analyzing the 240V power supply harmonic content using the DSK board.

Compost quality Management by Adding Sulfuric Acid and Alkaline Wastewater of Paper Mill as two Amendments

In composting process, N high-organic wastes loss the great part of its nitrogen as ammonia; therefore, using compost amendments can promote the quality of compost due to the decrease in ammonia volatilization. With regard to the effect of pH on composting, microorganisms- activity and ammonia volatilization, sulfuric acid and alkaline wastewater of paper mill (as liming agent with Ca and Mg ions) were used as compost amendments. Study results indicated that these amendments are suitable for reclamation of compost quality properties. These held nitrogen in compost caused to reduce C/N ratio. Both amendments had a significant effect on total nitrogen, but it should be used sulfuric acid in fewer amounts (20 ml/kg fresh organic wastes); and the more amounts of acid is not proposed.

Evaluation of Handover Latency in Intra- Domain Mobility

Mobile IPv6 (MIPv6) describes how mobile node can change its point of attachment from one access router to another. As a demand for wireless mobile devices increases, many enhancements for macro-mobility (inter-domain) protocols have been proposed, designed and implemented in Mobile IPv6. Hierarchical Mobile IPv6 (HMIPv6) is one of them that is designed to reduce the amount of signaling required and to improve handover speed for mobile connections. This is achieved by introducing a new network entity called Mobility Anchor Point (MAP). This report presents a comparative study of the Hierarchical Mobility IPv6 and Mobile IPv6 protocols and we have narrowed down the scope to micro-mobility (intra-domain). The architecture and operation of each protocol is studied and they are evaluated based on the Quality of Service (QoS) parameter; handover latency. The simulation was carried out by using the Network Simulator-2. The outcome from this simulation has been discussed. From the results, it shows that, HMIPv6 performs best under intra-domain mobility compared to MIPv6. The MIPv6 suffers large handover latency. As enhancement we proposed to HMIPv6 to locate the MAP to be in the middle of the domain with respect to all Access Routers. That gives approximately same distance between MAP and Mobile Node (MN) regardless of the new location of MN, and possible shorter distance. This will reduce the delay since the distance is shorter. As a future work performance analysis is to be carried for the proposed HMIPv6 and compared to HMIPv6.

Design of the Production Line Based On RFID through 3D Modeling

Radio-frequency identification has entered as a beneficial means with conforming GS1 standards to provide the best solutions in the manufacturing area. It competes with other automated identification technologies e.g. barcodes and smart cards with regard to high speed scanning, reliability and accuracy as well. The purpose of this study is to improve production line-s performance by implementing RFID system in the manufacturing area on the basis of radio-frequency identification (RFID) system by 3D modeling in the program Cinema 4D R13 which provides obvious graphical scenes for users to portray their applications. Finally, with regard to improving system performance, it shows how RFID appears as a well-suited technology in a comparison of the barcode scanner to handle different kinds of raw materials in the production line base on logical process.

Financing - Scheduling Optimization for Construction Projects by using Genetic Algorithms

Investment in a constructed facility represents a cost in the short term that returns benefits only over the long term use of the facility. Thus, the costs occur earlier than the benefits, and the owners of facilities must obtain the capital resources to finance the costs of construction. A project cannot proceed without an adequate financing, and the cost of providing an adequate financing can be quite large. For these reasons, the attention to the project finance is an important aspect of project management. Finance is also a concern to the other organizations involved in a project such as the general contractor and material suppliers. Unless an owner immediately and completely covers the costs incurred by each participant, these organizations face financing problems of their own. At a more general level, the project finance is the only one aspect of the general problem of corporate finance. If numerous projects are considered and financed together, then the net cash flow requirements constitute the corporate financing problem for capital investment. Whether project finance is performed at the project or at the corporate level does not alter the basic financing problem .In this paper, we will first consider facility financing from the owner's perspective, with due consideration for its interaction with other organizations involved in a project. Later, we discuss the problems of construction financing which are crucial to the profitability and solvency of construction contractors. The objective of this paper is to present the steps utilized to determine the best combination of minimum project financing. The proposed model considers financing; schedule and maximum net area .The proposed model is called Project Financing and Schedule Integration using Genetic Algorithms "PFSIGA". This model intended to determine more steps (maximum net area) for any project with a subproject. An illustrative example will demonstrate the feature of this technique. The model verification and testing are put into consideration.

Applications of Trigonometic Measures of Fuzzy Entropy to Geometry

In the literature of fuzzy measures, there exist many well known parametric and non-parametric measures, each with its own merits and limitations. But our main emphasis is on applications of these measures to a variety of disciplines. To extend the scope of applications of these fuzzy measures to geometry, we need some special fuzzy measures. In this communication, we have introduced two new fuzzy measures involving trigonometric functions and simultaneously provided their applications to obtain the basic results already existing in the literature of geometry.

Emergency Health Management and Student Hygiene at a South African University

Risk of infectious disease outbreaks is related to the hygiene among the population. To assess the actual risks and modify the relevant emergency procedures if necessary, a hygiene survey was conducted among undergraduate students on the Rhodes University campus. Soap was available to 10.5% and only 26.8% of the study participants followed proper hygiene in relation to food consumption. This combination increases the risk of infectious disease outbreaks at the campus. Around 83.6% were willing to wash their hands if soap was provided. Procurement and availability of soap in undergraduate residences on campus should be improved, as the total cost is estimated at only 2000 USD per annum. Awareness campaigns about food-related hygiene and the need for regular handwashing with soap should be run among Rhodes University students. If successful, rates of respiratory and hygiene-related diseases will be decreased and emergency health management simplified.

Modeling and Design of MPPT Controller Using Stepped P&O Algorithm in Solar Photovoltaic System

This paper presents modeling and simulation of Grid Connected Photovoltaic (PV) system by using improved mathematical model. The model is used to study different parameter variations and effects on the PV array including operating temperature and solar irradiation level. In this paper stepped P&O algorithm is proposed for MPPT control. This algorithm will identify the suitable duty ratio in which the DC-DC converter should be operated to maximize the power output. Photo voltaic array with proposed stepped P&O-MPPT controller can operate in the maximum power point for the whole range of solar data (irradiance and temperature).