Performance Study of ZigBee-Based Wireless Sensor Networks

The IEEE 802.15.4 standard is designed for low-rate wireless personal area networks (LR-WPAN) with focus on enabling wireless sensor networks. It aims to give a low data rate, low power consumption, and low cost wireless networking on the device-level communication. The objective of this study is to investigate the performance of IEEE 802.15.4 based networks using simulation tool. In this project the network simulator 2 NS2 was used to several performance measures of wireless sensor networks. Three scenarios were considered, multi hop network with a single coordinator, star topology, and an ad hoc on demand distance vector AODV. Results such as packet delivery ratio, hop delay, and number of collisions are obtained from these scenarios.

Activity Recognition by Smartphone Accelerometer Data Using Ensemble Learning Methods

As smartphones are equipped with various sensors, there have been many studies focused on using these sensors to create valuable applications. Human activity recognition is one such application motivated by various welfare applications, such as the support for the elderly, measurement of calorie consumption, lifestyle and exercise patterns analyses, and so on. One of the challenges one faces when using smartphone sensors for activity recognition is that the number of sensors should be minimized to save battery power. In this paper, we show that a fairly accurate classifier can be built that can distinguish ten different activities by using only a single sensor data, i.e., the smartphone accelerometer data. The approach that we adopt to deal with this twelve-class problem uses various methods. The features used for classifying these activities include not only the magnitude of acceleration vector at each time point, but also the maximum, the minimum, and the standard deviation of vector magnitude within a time window. The experiments compared the performance of four kinds of basic multi-class classifiers and the performance of four kinds of ensemble learning methods based on three kinds of basic multi-class classifiers. The results show that while the method with the highest accuracy is ECOC based on Random forest.

Design Channel Non-Persistent CSMA MAC Protocol Model for Complex Wireless Systems Based on SoC

This paper presents Carrier Sense Multiple Access (CSMA) communication models based on SoC design methodology. Such a model can be used to support the modeling of the complex wireless communication systems. Therefore, the use of such communication model is an important technique in the construction of high-performance communication. SystemC has been chosen because it provides a homogeneous design flow for complex designs (i.e. SoC and IP-based design). We use a swarm system to validate CSMA designed model and to show how advantages of incorporating communication early in the design process. The wireless communication created through the modeling of CSMA protocol that can be used to achieve communication between all the agents and to coordinate access to the shared medium (channel).

Fast Accurate Detection of Frequency Jumps Using Kalman Filter with Non Linear Improvements

In communication systems, frequency jump is a serious problem caused by the oscillators used. Kalman filters are used to detect that jump, despite the tradeoff between the noise level and the speed of the detection. In this paper, an improvement is introduced in the Kalman filter, through a nonlinear change in the bandwidth of the filter. Simulation results show a considerable improvement in the filter speed with a very low noise level. Additionally, the effect on the response to false alarms is also presented and false alarm rate show improvement.

A New Design of Permanent Magnets Reluctance Generator

Instantaneous electromagnetic torque of simple reflectance generator can be positive at a time and negative at other time. It is utilized to design a permanent magnet reluctance generator specifically. Generator is designed by combining two simple reluctance generators, consists of two rotors mounted on the same shaft, two output-windings and a field source of the permanent magnet. By this design, the electromagnetic torque on both rotor will be eliminated each other, so the input torque generator can be smaller. Rotor is expected only to regulate the flux flow to both output windings alternately, until the magnetic energy is converted into electrical energy, such as occurs in the transformer energy conversion. ​​The prototype trials have been made to test this design. The test result show that the new design of permanent magnets reluctance generator able to convert energy from permanent magnets into electrical energy, this is proven by the existence 167% power output compared to the shaft input power.

Load Frequency Control of Nonlinear Interconnected Hydro-Thermal System Using Differential Evolution Technique

This paper presents a differential evolution algorithm to design a robust PI and PID controllers for Load Frequency Control (LFC) of nonlinear interconnected power systems considering the boiler dynamics, Governor Dead Band (GDB), Generation Rate Constraint (GRC). Differential evolution algorithm is employed to search for the optimal controller parameters. The proposed method easily copes of with nonlinear constraints. Further the proposed controller is simple, effective and can ensure the desirable overall system performance. The superiority of the proposed approach has been shown by comparing the results with published fuzzy logic controller for the same power systems. The comparison is done using various performance measures like overshoot, settling time and standard error criteria of frequency and tie-line power deviation following a 1% step load perturbation in hydro area. It is noticed that, the dynamic performance of proposed controller is better than fuzzy logic controller. Furthermore, it is also seen that the proposed system is robust and is not affected by change in the system parameters.

Short-Term Electric Load Forecasting Using Multiple Gaussian Process Models

This paper presents a Gaussian process model-based short-term electric load forecasting. The Gaussian process model is a nonparametric model and the output of the model has Gaussian distribution with mean and variance. The multiple Gaussian process models as every hour ahead predictors are used to forecast future electric load demands up to 24 hours ahead in accordance with the direct forecasting approach. The separable least-squares approach that combines the linear least-squares method and genetic algorithm is applied to train these Gaussian process models. Simulation results are shown to demonstrate the effectiveness of the proposed electric load forecasting.

Gaussian Process Model Identification Using Artificial Bee Colony Algorithm and Its Application to Modeling of Power Systems

This paper presents a nonparametric identification of continuous-time nonlinear systems by using a Gaussian process (GP) model. The GP prior model is trained by artificial bee colony algorithm. The nonlinear function of the objective system is estimated as the predictive mean function of the GP, and the confidence measure of the estimated nonlinear function is given by the predictive covariance of the GP. The proposed identification method is applied to modeling of a simplified electric power system. Simulation results are shown to demonstrate the effectiveness of the proposed method.

Fuzzy Logic Based Cascaded H-Bridge Eleven Level Inverter for Photovoltaic System Using Sinusoidal Pulse Width Modulation Technique

Multilevel inverter is a promising inverter topology for high voltage and high power applications. This inverter synthesizes several different levels of DC voltages to produce a stepped AC output that approaches the pure sine waveform. The three different topologies, diode-clamped inverter, capacitor-clamped inverter and cascaded h-bridge multilevel inverter are widely used in these multilevel inverters. Among the three topologies, cascaded h-bridge multilevel inverter is more suitable for photovoltaic applications since each PV array can act as a separate dc source for each h-bridge module. This research especially focus on photovoltaic power source as input to the system and shows the potential of a Single Phase Cascaded H-bridge Eleven level inverter governed by the fuzzy logic controller to improve the power quality by reducing the total harmonic distortion at the output voltage. Hence the efficiency of the system will be improved. Simulation using MATLAB/SIMULINK has been done to verify the performance of cascaded h-bridge eleven level inverter using sinusoidal pulse width modulation technique. The simulated output shows very favorable result.

A New Approach for Network Reconfiguration Problem in Order to Deviation Bus Voltage Minimization with Regard to Probabilistic Load Model and DGs

Recently, distributed generation technologies have received much attention for the potential energy savings and reliability assurances that might be achieved as a result of their widespread adoption. The distribution feeder reconfiguration (DFR) is one of the most important control schemes in the distribution networks, which can be affected by DGs. This paper presents a new approach to DFR at the distribution networks considering wind turbines. The main objective of the DFR is to minimize the deviation of the bus voltage. Since the DFR is a nonlinear optimization problem, we apply the Adaptive Modified Firefly Optimization (AMFO) approach to solve it. As a result of the conflicting behavior of the single- objective function, a fuzzy based clustering technique is employed to reach the set of optimal solutions called Pareto solutions. The approach is tested on the IEEE 32-bus standard test system.

Design of a Reduced Order Robust Convex Controller for Flight Control System

In this paper an optimal convex controller is designed to control the angle of attack of a FOXTROT aircraft. Then the order of the system model is reduced to a low-dimensional state space by using Balanced Truncation Model Reduction Technique and finally the robust stability of the reduced model of the system is tested graphically by using Kharitonov rectangle and Zero Exclusion Principle for a particular range of perturbation value. The same robust stability is tested theoretically by using Frequency Sweeping Function for robust stability.

Gravitational Search Algorithm (GSA) Optimized SSSC Based Facts Controller to Improve Power System Oscillation Stability

In this paper, an investigation into the use of modified Genetic Algorithm optimized SSSC based controller to aid damping of low frequency inter-area oscillations in power systems is presented. Controller design is formulated as a nonlinear constrained optimization problem and modified Genetic Algorithm (MGA) is employed to search for the optimal controller parameters. For evaluation of effectiveness and robustness of proposed controllers, the performance was tested on multi-machine system subjected to different disturbances, loading conditions and system parameter variations. Simulation results are presented to show the fine performance of the proposed SSSC controller in damping the critical modes without significantly deteriorating the damping characteristics of other modes in multi-machine power system.

Gravitational Search Algorithm (GSA) Optimized SSSC Based Facts Controller to Improve Power System Oscillation Stability

Damping of inter-area electromechanical oscillations is one of the major challenges to the electric power system operators. This paper presents Gravitational Search Algorithm (GSA) for tuning Static Synchronous Series Compensator (SSSC) based damping controller to improve power system oscillation stability. In the proposed algorithm, the searcher agents are a collection of masses which interact with each other based on the Newtonian gravity and the laws of motion. The effectiveness of the scheme in damping power system oscillations during system faults at different loading conditions is demonstrated through time-domain simulation.

Impact Porous Dielectric Silica Gel for Operating Voltage and Power Discharge Reactor

This study examined the effect of porous dielectric silica gel the discharge ignition voltage and input power in a plasma reactor. For the experiment was used a plasma reactor with two mesh electrodes made of stainless steel with a mesh size of 0.1x0.1mm. The study analyzed and compared with parameters such as power, ignition and operation voltage of the reactor for two dielectrics a porous and glass. During experiment were observed several new phenomena conducted for porous dielectric. The first phenomenon was the reduction the ignition voltage discharge to volume around few hundred volts. Second it was increase input power six times more compared with power those obtained for the glass dielectric. Thirdly difference it is ΔV between ignition voltage Vi and operating voltage reactor Vm for porous dielectric it was 11%, while ΔV for the glass dielectric it was 60%. Also change the discharge characteristics from DBD for glass dielectric to the streamer resistance discharge for the porous dielectric.

Network Reconfiguration of Distribution System Using Artificial Bee Colony Algorithm

Power distribution systems typically have tie and sectionalizing switches whose states determine the topological configuration of the network. The aim of network reconfiguration of the distribution network is to minimize the losses for a load arrangement at a particular time. Thus the objective function is to minimize the losses of the network by satisfying the distribution network constraints. The various constraints are radiality, voltage limits and the power balance condition. In this paper the status of the switches is obtained by using Artificial Bee Colony (ABC) algorithm. ABC is based on a particular intelligent behavior of honeybee swarms. ABC is developed based on inspecting the behaviors of real bees to find nectar and sharing the information of food sources to the bees in the hive. The proposed methodology has three stages. In stage one ABC is used to find the tie switches, in stage two the identified tie switches are checked for radiality constraint and if the radilaity constraint is satisfied then the procedure is proceeded to stage three otherwise the process is repeated. In stage three load flow analysis is performed. The process is repeated till the losses are minimized. The ABC is implemented to find the power flow path and the Forward Sweeper algorithm is used to calculate the power flow parameters. The proposed methodology is applied for a 33–bus single feeder distribution network using MATLAB.

Energy Management System in HEV Using PI Controller

Nowadays the use of Hybrid Electric Vehicles (HEV) is increasing dramatically. The HEV is mainly dependent on electricity and there is always a need for storage of charge. Fuel Cell (FC), Batteries and Ultra Capacitor are being used for the proposed HEV as an electric power source or as an energy storage unit. The aim of developing an energy management technique is to utilize the sources according to the requirement of the vehicle with help of controller. This increases the efficiency of hybrid electric vehicle to reduce the fuel consumption and unwanted emission. The Maximum Power Point Tracking (MPPT) in FC is done using (Perturb & Observe) algorithm. In this paper, the control of automobiles at variable speed is achieved effectively.

Bandwidth Enhancement in CPW Fed Compact Rectangular Patch Antenna

This paper presents a novel CPW fed patch antenna supporting a wide band from 2.7 GHz – 6.5 GHz. The antenna is compact with size 32 x 30 x 1.6mm3, built over FR4-epoxy substrate (εr=4.4). Bandwidth enhancement has been achieved by using the concept of modified ground structure (MGS). For this purpose structural design has been optimized by parametric simulations in CST MWS. The proposed antenna can perform well in variety of wireless communication services including 5.15 GHz- 5.35 GHz and 5.725 GHz- 5.825 GHz WLAN IEEE 802.11 g/a, 5.2/ 5.5/ 5.8 GHz Wi-Fi, 3.5/5.5 GHz WiMax applications  and 3.7 - 4.2 GHz C band satellite communications bands. The measured experimental results show that bandwidth (S11 < -10 dB) of antenna is 3.8 GHz. The performance of antenna is studied in terms of reflection coefficient, radiation characteristics, current distribution and gain.

DPSO Based SEPIC Converter in PV System under Partial Shading Condition

This paper proposes an improved Maximum Power Point Tracking of PhotoVoltaic system using Deterministic Partical Swarm Optimization technique. This method has the ability to track the maximum power under varying environmental conditions i.e. partial shading conditions. The advantage of this method, particles moves in the restricted value of velocity to achieve the maximum power. SEPIC converter is employed to boost up the voltage of PV system. To estimate the value of the proposed method, MATLAB simulation carried out under partial shading condition.

Blind Identification Channel Using Higher Order Cumulants with Application to Equalization for MC−CDMA System

In this paper we propose an algorithm based on higher order cumulants, for blind impulse response identification of frequency radio channels and downlink (MC−CDMA) system Equalization. In order to test its efficiency, we have compared with another algorithm proposed in the literature, for that we considered on theoretical channel as the Proakis’s ‘B’ channel and practical frequency selective fading channel, called Broadband Radio Access Network (BRAN C), normalized for (MC−CDMA) systems, excited by non-Gaussian sequences. In the part of (MC−CDMA), we use the Minimum Mean Square Error (MMSE) equalizer after the channel identification to correct the channel’s distortion. The simulation results, in noisy environment and for different signal to noise ratio (SNR), are presented to illustrate the accuracy of the proposed algorithm.

A Maximum Power Point Tracker for PV Panels Using SEPIC Converter

Photovoltaic (PV) energy is one of the most important renewable energy sources. Maximum Power Point Tracking (MPPT) techniques should be used in photovoltaic systems to maximize the PV panel output power by tracking continuously the maximum power point which depends on panel’s temperature and on irradiance conditions. Incremental conductance control method has been used as MPPT algorithm. The methodology is based on connecting a pulse width modulated dc/dc SEPIC converter, which is controlled by a microprocessor based unit. The SEPIC converter is one of the buck-boost converters which maintain the output voltage as constant irrespective of the solar isolation level. By adjusting the switching frequency of the converter the maximum power point has been achieved. The main difference between the method used in the proposed MPPT systems and other technique used in the past is that PV array output power is used to directly control the dc/dc converter thus reducing the complexity of the system. The resulting system has high efficiency, low cost and can be easily modified. The tracking capability has been verified experimentally with a 10 W solar panel under a controlled experimental setup. The SEPIC converter and their control strategies has been analyzed and simulated using Simulink/Matlab software.