High Impedance Faults Detection Technique Based on Wavelet Transform

The purpose of this paper is to solve the problem of protecting aerial lines from high impedance faults (HIFs) in distribution systems. This investigation successfully applies 3I0 zero sequence current to solve HIF problems. The feature extraction system based on discrete wavelet transform (DWT) and the feature identification technique found on statistical confidence are then applied to discriminate effectively between the HIFs and the switch operations. Based on continuous wavelet transform (CWT) pattern recognition of HIFs is proposed, also. Staged fault testing results demonstrate that the proposed wavelet based algorithm is feasible performance well.

Application of Phase Change Materials (PCMs) in Maintaining Comfort Temperature inside an Automobile

This paper presents the modeling results of an innovative system for the temperature control in the interior compartment of a stationary automobile facing the solar energy from the sun. A very thin layer of PCM inside a pouch placed in the ceiling of the car in which the heating energy is absorbed and release with melting and solidification of phase change materials. As a result the temperature of the car interior is maintained in the comfort condition. The amount of required PCM has been calculated to be about 755 g. The PCM-temperature controlling system is simple and has a potential to be implemented as a practical solution to prevent undesirable heating of the automobile-s cabin.

Multiple Regression based Graphical Modeling for Images

Super resolution is one of the commonly referred inference problems in computer vision. In the case of images, this problem is generally addressed using a graphical model framework wherein each node represents a portion of the image and the edges between the nodes represent the statistical dependencies. However, the large dimensionality of images along with the large number of possible states for a node makes the inference problem computationally intractable. In this paper, we propose a representation wherein each node can be represented as acombination of multiple regression functions. The proposed approach achieves a tradeoff between the computational complexity and inference accuracy by varying the number of regression functions for a node.

Atomic Force Microscopy (AFM)Topographical Surface Characterization of Multilayer-Coated and Uncoated Carbide Inserts

In recent years, scanning probe atomic force microscopy SPM AFM has gained acceptance over a wide spectrum of research and science applications. Most fields focuses on physical, chemical, biological while less attention is devoted to manufacturing and machining aspects. The purpose of the current study is to assess the possible implementation of the SPM AFM features and its NanoScope software in general machining applications with special attention to the tribological aspects of cutting tool. The surface morphology of coated and uncoated as-received carbide inserts is examined, analyzed, and characterized through the determination of the appropriate scanning setting, the suitable data type imaging techniques and the most representative data analysis parameters using the MultiMode SPM AFM in contact mode. The NanoScope operating software is used to capture realtime three data types images: “Height", “Deflection" and “Friction". Three scan sizes are independently performed: 2, 6, and 12 μm with a 2.5 μm vertical range (Z). Offline mode analysis includes the determination of three functional topographical parameters: surface “Roughness", power spectral density “PSD" and “Section". The 12 μm scan size in association with “Height" imaging is found efficient to capture every tiny features and tribological aspects of the examined surface. Also, “Friction" analysis is found to produce a comprehensive explanation about the lateral characteristics of the scanned surface. Configuration of many surface defects and drawbacks has been precisely detected and analyzed.

Behavioral Analysis of Team Members in Virtual Organization based on Trust Dimension and Learning

Trust management and Reputation models are becoming integral part of Internet based applications such as CSCW, E-commerce and Grid Computing. Also the trust dimension is a significant social structure and key to social relations within a collaborative community. Collaborative Decision Making (CDM) is a difficult task in the context of distributed environment (information across different geographical locations) and multidisciplinary decisions are involved such as Virtual Organization (VO). To aid team decision making in VO, Decision Support System and social network analysis approaches are integrated. In such situations social learning helps an organization in terms of relationship, team formation, partner selection etc. In this paper we focus on trust learning. Trust learning is an important activity in terms of information exchange, negotiation, collaboration and trust assessment for cooperation among virtual team members. In this paper we have proposed a reinforcement learning which enhances the trust decision making capability of interacting agents during collaboration in problem solving activity. Trust computational model with learning that we present is adapted for best alternate selection of new project in the organization. We verify our model in a multi-agent simulation where the agents in the community learn to identify trustworthy members, inconsistent behavior and conflicting behavior of agents.

Quadratic Pulse Inversion Ultrasonic Imaging(QPI): A Two-Step Procedure for Optimization of Contrast Sensitivity and Specificity

We have previously introduced an ultrasonic imaging approach that combines harmonic-sensitive pulse sequences with a post-beamforming quadratic kernel derived from a second-order Volterra filter (SOVF). This approach is designed to produce images with high sensitivity to nonlinear oscillations from microbubble ultrasound contrast agents (UCA) while maintaining high levels of noise rejection. In this paper, a two-step algorithm for computing the coefficients of the quadratic kernel leading to reduction of tissue component introduced by motion, maximizing the noise rejection and increases the specificity while optimizing the sensitivity to the UCA is presented. In the first step, quadratic kernels from individual singular modes of the PI data matrix are compared in terms of their ability of maximize the contrast to tissue ratio (CTR). In the second step, quadratic kernels resulting in the highest CTR values are convolved. The imaging results indicate that a signal processing approach to this clinical challenge is feasible.

A Multilingual Virtual Simulated Patient Framework for Training Primary Health Care Students

This paper describes the Multilingual Virtual Simulated Patient framework. It has been created to train the social skills and testing the knowledge of primary health care medical students. The framework generates conversational agents which perform in serveral languages as virtual simulated patients that help to improve the communication and diagnosis skills of the students complementing their training process.

Design, Fabrication and Performance Evaluation of Mobile Engine-Driven Pneumatic Paddy Collector

A simple mobile engine-driven pneumatic paddy collector made of locally available materials using local manufacturing technology was designed, fabricated, and tested for collecting and bagging of paddy dried on concrete pavement. The pneumatic paddy collector had the following major components: radial flat bladed type centrifugal fan, power transmission system, bagging area, frame and the conveyance system. Results showed significant differences on the collecting capacity, noise level, and fuel consumption when rotational speed of the air mover shaft was varied. Other parameters such as collecting efficiency, air velocity, augmented cracked grain percentage, and germination rate were not significantly affected by varying rotational speed of the air mover shaft. The pneumatic paddy collector had a collecting efficiency of 99.33 % with a collecting capacity of 2685.00 kg/h at maximum rotational speed of centrifugal fan shaft of about 4200 rpm. The machine entailed an investment cost of P 62,829.25. The break-even weight of paddy was 510,606.75 kg/yr at a collecting cost of 0.11 P/kg of paddy. Utilizing the machine for 400 hours per year generated an income of P 23,887.73. The projected time needed to recover cost of the machine based on 2685 kg/h collecting capacity was 2.63 year.

Sustained Competitive Advantage: Strategic HRM Initiatives and Consequences in Indian Context

In the past few decades, researchers have witnessed a paradigm shift in Human Resource Management-from individual performance to organizational outcomes with the role of Human resource (HR) managers becoming increasingly significant to the organization. In such a context, it is important to examine HR practices from a strategic perspective on the sustained competitive advantage (SCA) of the organizations. The present study explores how Indian organisations look at their human resources strategically when faced with competitive environment. Also, it explores strategic initiatives being taken to manage human resources within the organisations and how these initiatives promote SCA in terms of enhancing the overall customer-centric delivery of goods and services.

Designing Ontology-Based Knowledge Integration for Preprocessing of Medical Data in Enhancing a Machine Learning System for Coding Assignment of a Multi-Label Medical Text

This paper discusses the designing of knowledge integration of clinical information extracted from distributed medical ontologies in order to ameliorate a machine learning-based multilabel coding assignment system. The proposed approach is implemented using a decision tree technique of the machine learning on the university hospital data for patients with Coronary Heart Disease (CHD). The preliminary results obtained show a satisfactory finding that the use of medical ontologies improves the overall system performance.

Possibilistic Clustering Technique-Based Traffic Light Control for Handling Emergency Vehicle

A traffic light gives security from traffic congestion,reducing the traffic jam, and organizing the traffic flow. Furthermore,increasing congestion level in public road networks is a growingproblem in many countries. Using Intelligent Transportation Systemsto provide emergency vehicles a green light at intersections canreduce driver confusion, reduce conflicts, and improve emergencyresponse times. Nowadays, the technology of wireless sensornetworks can solve many problems and can offer a good managementof the crossroad. In this paper, we develop a new approach based onthe technique of clustering and the graphical possibilistic fusionmodeling. So, the proposed model is elaborated in three phases. Thefirst one consists to decompose the environment into clusters,following by the fusion intra and inter clusters processes. Finally, wewill show some experimental results by simulation that proves theefficiency of our proposed approach.KeywordsTraffic light, Wireless sensor network, Controller,Possibilistic network/Bayesain network.

The Contribution of Growth Rate to the Pathogenicity of Candida spp.

Fungal infections are becoming more common and the range of susceptible individuals has expanded. While Candida albicans remains the most common infective species, other Candida spp. are becoming increasingly significant. In a range of large-scale studies of candidaemia between 1999 and 2006, about 52% of 9717 cases involved C. albicans, about 30% involved either C. glabrata or C. parapsilosis and less than 15% involved C. tropicalis, C. krusei or C. guilliermondii. However, the probability of mortality within 30 days of infection with a particular species was at least 40% for C. tropicalis, C. albicans, C. glabrata and C. krusei and only 22% for C. parapsilopsis. Clinical isolates of Candida spp. grew at rates ranging from 1.65 h-1 to 4.9 h-1. Three species (C. krusei, C. albicans and C. glabrata) had relatively high growth rates (μm > 4 h-1), C. tropicalis and C. dubliniensis grew moderately quickly (Ôëê 3 h-1) and C. parapsilosis and C. guilliermondii grew slowly (< 2 h-1). Based on these data, the log of the odds of mortality within 30 days of diagnosis was linearly related to μm. From this the underlying probability of mortality is 0.13 (95% CI: 0.10-0.17) and it increases by about 0.09 ± 0.02 for each unit increase in μm. Given that the overall crude mortality is about 0.36, the growth of Candida spp. approximately doubles the rate, consistent with the results of larger case-matched studies of candidaemia.

Online Programme of Excellence Model (OPEM)

Finding effective ways of improving university quality assurance requires, as well, a retraining of the staff. This article illustrates an Online Programme of Excellence Model (OPEM), based on the European quality assurance model, for improving participants- formative programme standards. The results of applying this OPEM indicate the necessity of quality policies that support the evaluators- competencies to improve formative programmes. The study concludes by outlining how faculty and agency staff can use OPEM for the internal and external quality assurance of formative programmes.

Orders Preparation and Control on the Productive Process Efficiency Preparation

The main objective of this paper is to analyse the influence of preparation and control of orders on performance. The focused activities explored in this research are: procurement, production and distribution. These changes in performance were obtained through improvement of the supply chain. It is proved using all the company activities that it is possible to increase de efficiency and do services in an adequate way, placing the products in the market efficiently. For that, it was explored the importance of the supply chain, with privilege to the practical environment and the quantification of the obtained results.

Binary Classification Tree with Tuned Observation-based Clustering

There are several approaches for handling multiclass classification. Aside from one-against-one (OAO) and one-against-all (OAA), hierarchical classification technique is also commonly used. A binary classification tree is a hierarchical classification structure that breaks down a k-class problem into binary sub-problems, each solved by a binary classifier. In each node, a set of classes is divided into two subsets. A good class partition should be able to group similar classes together. Many algorithms measure similarity in term of distance between class centroids. Classes are grouped together by a clustering algorithm when distances between their centroids are small. In this paper, we present a binary classification tree with tuned observation-based clustering (BCT-TOB) that finds a class partition by performing clustering on observations instead of class centroids. A merging step is introduced to merge any insignificant class split. The experiment shows that performance of BCT-TOB is comparable to other algorithms.

Adaptive Car Safety System

Car accident is one of the major causes of death in many countries. Many researchers have attempted to design and develop techniques to increase car safety in the past recent years. In spite of all the efforts, it is still challenging to design a system adaptive to the driver rather than the automotive characteristics. In this paper, the adaptive car safety system is explained which attempts to find a balance.

Target Trajectory Design of Parametrically Excited Inverted Pendulum for Efficient Bipedal Walking

For stable bipedal gait generation on the level floor, efficient restoring of mechanical energy lost by heel collision at the ground is necessary. Parametric excitation principle is one of the solutions. We dealt with the robot-s total center of mass as an inverted pendulum to consider the total dynamics of the robot. Parametrically excited walking requires the use of continuous target trajectory that is close to discontinuous optimal trajectory. In this paper, we proposed the new target trajectory based on a position in the walking direction. We surveyed relations between walking performance and the parameters that form the target trajectory via numerical simulations. As a result, it was found that our target trajectory has the similar characteristics of a parametrically excited inverted pendulum.

An Efficient Method of Shot Cut Detection

In this paper we present a method of abrupt cut detection with a novel logic of frames- comparison. Actual frame is compared with its motion estimated prediction instead of comparison with successive frame. Four different similarity metrics were employed to estimate the resemblance of compared frames. Obtained results were evaluated by standard used measures of test accuracy and compared with existing approach. Based on the results, we claim the proposed method is more effective and Pearson correlation coefficient obtained the best results among chosen similarity metrics.

The Role of Contextual Ontologies in Enterprise Modeling

Information sharing and exchange, rather than information processing, is what characterizes information technology in the 21st century. Ontologies, as shared common understanding, gain increasing attention, as they appear as the most promising solution to enable information sharing both at a semantic level and in a machine-processable way. Domain Ontology-based modeling has been exploited to provide shareability and information exchange among diversified, heterogeneous applications of enterprises. Contextual ontologies are “an explicit specification of contextual conceptualization". That is: ontology is characterized by concepts that have multiple representations and they may exist in several contexts. Hence, contextual ontologies are a set of concepts and relationships, which are seen from different perspectives. Contextualization is to allow for ontologies to be partitioned according to their contexts. The need for contextual ontologies in enterprise modeling has become crucial due to the nature of today's competitive market. Information resources in enterprise is distributed and diversified and is in need to be shared and communicated locally through the intranet and globally though the internet. This paper discusses the roles that ontologies play in an enterprise modeling, and how ontologies assist in building a conceptual model in order to provide communicative and interoperable information systems. The issue of enterprise modeling based on contextual domain ontology is also investigated, and a framework is proposed for an enterprise model that consists of various applications.

2D Graphical Analysis of Wastewater Influent Capacity Time Series

The extraction of meaningful information from image could be an alternative method for time series analysis. In this paper, we propose a graphical analysis of time series grouped into table with adjusted colour scale for numerical values. The advantages of this method are also discussed. The proposed method is easy to understand and is flexible to implement the standard methods of pattern recognition and verification, especially for noisy environmental data.