Performance Analysis of Multiuser Diversity in Multiuser Two-Hop Decode-and-Forward Cooperative Multi-Relay Wireless Networks

Cooperative diversity (CD) has been adopted in many communication systems because it helps in improving performance of the wireless communication systems with the help of the relays that emulate the multiple antenna terminals. This work aims to provide the derivation of the performance analysis expressions of the multiuser diversity (MUD) in the two-hop cooperative multi-relay wireless networks (TCMRNs). Considering the work analysis, we provide analytically the derivation of a closed form expression of the two most commonly used performance metrics namely, the outage probability and the symbol error probability (SEP) for the fixed decode-and-forward (FDF) protocol with MUD.

Quadratic Pulse Inversion Ultrasonic Imaging(QPI): A Two-Step Procedure for Optimization of Contrast Sensitivity and Specificity

We have previously introduced an ultrasonic imaging approach that combines harmonic-sensitive pulse sequences with a post-beamforming quadratic kernel derived from a second-order Volterra filter (SOVF). This approach is designed to produce images with high sensitivity to nonlinear oscillations from microbubble ultrasound contrast agents (UCA) while maintaining high levels of noise rejection. In this paper, a two-step algorithm for computing the coefficients of the quadratic kernel leading to reduction of tissue component introduced by motion, maximizing the noise rejection and increases the specificity while optimizing the sensitivity to the UCA is presented. In the first step, quadratic kernels from individual singular modes of the PI data matrix are compared in terms of their ability of maximize the contrast to tissue ratio (CTR). In the second step, quadratic kernels resulting in the highest CTR values are convolved. The imaging results indicate that a signal processing approach to this clinical challenge is feasible.