Noise Reduction in Image Sequences using an Effective Fuzzy Algorithm

In this paper, we propose a novel spatiotemporal fuzzy based algorithm for noise filtering of image sequences. Our proposed algorithm uses adaptive weights based on a triangular membership functions. In this algorithm median filter is used to suppress noise. Experimental results show when the images are corrupted by highdensity Salt and Pepper noise, our fuzzy based algorithm for noise filtering of image sequences, are much more effective in suppressing noise and preserving edges than the previously reported algorithms such as [1-7]. Indeed, assigned weights to noisy pixels are very adaptive so that they well make use of correlation of pixels. On the other hand, the motion estimation methods are erroneous and in highdensity noise they may degrade the filter performance. Therefore, our proposed fuzzy algorithm doesn-t need any estimation of motion trajectory. The proposed algorithm admissibly removes noise without having any knowledge of Salt and Pepper noise density.

Concurrency without Locking in Parallel Hash Structures used for Data Processing

Various mechanisms providing mutual exclusion and thread synchronization can be used to support parallel processing within a single computer. Instead of using locks, semaphores, barriers or other traditional approaches in this paper we focus on alternative ways for making better use of modern multithreaded architectures and preparing hash tables for concurrent accesses. Hash structures will be used to demonstrate and compare two entirely different approaches (rule based cooperation and hardware synchronization support) to an efficient parallel implementation using traditional locks. Comparison includes implementation details, performance ranking and scalability issues. We aim at understanding the effects the parallelization schemes have on the execution environment with special focus on the memory system and memory access characteristics.

FEA for Transient Responses of an S-Shaped Force Transducer with a Viscoelastic Absorber Using a Nonlinear Complex Spring

To compute dynamic characteristics of nonlinear viscoelastic springs with elastic structures having huge degree-of-freedom, Yamaguchi proposed a new fast numerical method using finite element method [1]-[2]. In this method, restoring forces of the springs are expressed using power series of their elongation. In the expression, nonlinear hysteresis damping is introduced. In this expression, nonlinear complex spring constants are introduced. Finite element for the nonlinear spring having complex coefficients is expressed and is connected to the elastic structures modeled by linear solid finite element. Further, to save computational time, the discrete equations in physical coordinate are transformed into the nonlinear ordinary coupled equations using normal coordinate corresponding to linear natural modes. In this report, the proposed method is applied to simulation for impact responses of a viscoelastic shock absorber with an elastic structure (an S-shaped structure) by colliding with a concentrated mass. The concentrated mass has initial velocities and collides with the shock absorber. Accelerations of the elastic structure and the concentrated mass are measured using Levitation Mass Method proposed by Fujii [3]. The calculated accelerations from the proposed FEM, corresponds to the experimental ones. Moreover, using this method, we also investigate dynamic errors of the S-shaped force transducer due to elastic mode in the S-shaped structure.

Symmetrical Analysis of a Six-Phase Induction Machine Under Fault Conditions

The operational behavior of a six-phase squirrel cage induction machine with faulted stator terminals is presented in this paper. The study is carried out using the derived mathematical model of the machine in the arbitrary reference frame. Tests are conducted on a 1 kW experimental machine. Steady-state and dynamic performance are analyzed for the machine unloaded and loaded conditions. The results shows that with one of the stator phases experiencing either an open- circuit or short circuit fault the machine still produces starting torque, albeit the running performance is significantly derated.

Body Mass Index for Australian Athletes Participating in Rugby Union, Soccer and Touch Football at the World Masters Games

Whilst there is growing evidence that activity across the lifespan is beneficial for improved health, there are also many changes involved with the aging process and subsequently the potential for reduced indices of health. Data gathered on a subsample of 535 football code athletes, aged 31-72 yrs ( = 47.4, s = ±7.1), competing at the Sydney World Masters Games (2009) demonstrated a significantly (p < 0.001), reduced classification of obesity using Body Mass Index (BMI) when compared to the general Australian population. This evidence of improved classification in one index of health (BMI < 30) for master athletes (when compared to the general population) implies there are either improved levels of this index of health due to adherence to sport or possibly the reduced BMI is advantageous and contributes to this cohort adhering (or being attracted) to masters sport. Demonstration of this proportionately under-investigated World Masters Games population having improved health over the general population is of particular interest.

A Comparison of Inflow Generation Methods for Large-Eddy Simulation

A study of various turbulent inflow generation methods was performed to compare their relative effectiveness for LES computations of turbulent boundary layers. This study confirmed the quality of the turbulent information produced by the family of recycling and rescaling methods which take information from within the computational domain. Furthermore, more general inflow methods also proved applicable to such simulations, with a precursor-like inflow and a random inflow augmented with forcing planes showing promising results.

The Boundary Theory between Laminar and Turbulent Flows

The basis of this paper is the assumption, that graviton is a measurable entity of molecular gravitational acceleration and this is not a hypothetical entity. The adoption of this assumption as an axiom is tantamount to fully opening the previously locked door to the boundary theory between laminar and turbulent flows. It leads to the theorem, that the division of flows of Newtonian (viscous) fluids into laminar and turbulent is true only, if the fluid is influenced by a powerful, external force field. The mathematical interpretation of this theorem, presented in this paper shows, that the boundary between laminar and turbulent flow can be determined theoretically. This is a novelty, because thus far the said boundary was determined empirically only and the reasons for its existence were unknown.

Global Existence of Periodic Solutions in a Delayed Tri–neuron Network

In this paper, a tri–neuron network model with time delay is investigated. By using the Bendixson-s criterion for high– dimensional ordinary differential equations and global Hopf bifurcation theory for functional differential equations, sufficient conditions for existence of periodic solutions when the time delay is sufficiently large are established.

Percolation Transition with Hidden Variables in Complex Networks

A new class of percolation model in complex networks, in which nodes are characterized by hidden variables reflecting the properties of nodes and the occupied probability of each link is determined by the hidden variables of the end nodes, is studied in this paper. By the mean field theory, the analytical expressions for the phase of percolation transition is deduced. It is determined by the distribution of the hidden variables for the nodes and the occupied probability between pairs of them. Moreover, the analytical expressions obtained are checked by means of numerical simulations on a particular model. Besides, the general model can be applied to describe and control practical diffusion models, such as disease diffusion model, scientists cooperation networks, and so on.

Demonstration of a Low-Cost Monocycle Pulse for UWB Radio Transceiver

This paper presents a simple and original method for the generation of short monocycle pulses based on the transient response of a passive band-pass filter. The recorded sub-nanosecond pulses show a good symmetry and a small ringing (13 % of the peak amplitude). Their spectral density covers the range 3.1 GHz to 10.6 GHz. The possibility to adapt the pulse spectral density to the indoor FCC frequency mask is demonstrated with a prototype working at a reduced frequency (FCC/1000). A detection technique is proposed.

Performance Enhancement of Membrane Distillation Process in Fruit Juice Concentration by Membrane Surface Modification

In this work Membrane Distillation is applied to concentrate orange Juice. Clarified orange juice (11o Brix) obtained from fresh fruits and a sugar solution was subjected to membrane distillation. The experiments were performed on a flat sheet module using orange juice and sucrose solution as feeds. The concentration of a sucrose solution, used as a model fruit juice and also orange juice, was carried out in a direct contact membrane distillation using hydrophobic PTFE membrane of pore size 0.2 μm and porosity 70%. Surface modification of PTFE membrane has been carried out by treating membrane with alcohol and water solution to make it hydrophilic and then hydrophobicity was regained by drying. The influences of the feed temperature, feed concentration, flow rate, operating time on the permeate flux were studied for treated and non treated membrane. In this work treated and non treated membrane were compared in terms of water flux, Within the tested range, MD with surface modified membrane the water flux has been significantly improved by treating the membrane surface.

Optimization of Pretreatment and Enzymatic Saccharification of Cogon Grass Prior Ethanol Production

The dilute acid pretreatment and enzymatic saccharification of lignocellulosic substrate, cogon grass (Imperata cylindrical, L.) was optimized prior ethanol fermentation using simultaneous saccharification and fermentation (SSF) method. The optimum pretreatment conditions, temperature, sulfuric acid concentration, and reaction time were evaluated by determining the maximum sugar yield at constant enzyme loading. Cogon grass, at 10% w/v substrate loading, has optimum pretreatment conditions of 126°C, 0.6% v/v H2SO4, and 20min reaction time. These pretreatment conditions were used to optimize enzymatic saccharification using different enzyme combinations. The maximum saccharification yield of 36.68mg/mL (71.29% reducing sugar) was obtained using 25FPU/g-cellulose cellulase complex combined with 1.1% w/w of cellobiase, ß-glucosidase, and 0.225% w/w of hemicellulase complex, after 96 hours of saccharification. Using the optimum pretreatment and saccharification conditions, SSF of treated substrates was done at 37°C for 120 hours using industrial yeast strain HBY3, Saccharomyces cerevisiae. The ethanol yield for cogon grass at 4% w/w loading was 9.11g/L with 5.74mg/mL total residual sugar.

Application of Motivational Factors for Uploading Films to Websites Ulozto.net and Piratebay.org

This paper studies, maps and explains the interactions between downloaders and uploaders pertaining to the Internet film piracy. This study also covers several motivational factors that influence users to upload or download movies, and thus to engage in film piracy over the Internet. The essay also proposes a model that describes user behavior including their relationships and influences. Moreover, proposed theoretical interactions and motivational factors are applied to the real world scenario, using examples of a data storage webpage server Ulozto.net and webpage Piratebay.org gathering information about downloadable BitTorrents. Moreover, the theory is further supported by description of behavior of real Internet uploaders.

Nonlinear Optimal Line-Of-Sight Stabilization with Fuzzy Gain-Scheduling

A nonlinear optimal controller with a fuzzy gain scheduler has been designed and applied to a Line-Of-Sight (LOS) stabilization system. Use of Linear Quadratic Regulator (LQR) theory is an optimal and simple manner of solving many control engineering problems. However, this method cannot be utilized directly for multigimbal LOS systems since they are nonlinear in nature. To adapt LQ controllers to nonlinear systems at least a linearization of the model plant is required. When the linearized model is only valid within the vicinity of an operating point a gain scheduler is required. Therefore, a Takagi-Sugeno Fuzzy Inference System gain scheduler has been implemented, which keeps the asymptotic stability performance provided by the optimal feedback gain approach. The simulation results illustrate that the proposed controller is capable of overcoming disturbances and maintaining a satisfactory tracking performance.

Analysis of Phosphate in Wastewater Using an Autonomous Microfluidics-Based Analyser

A portable sensor for the analysis of phosphate in aqueous samples has been developed. The sensor incorporates microfluidic technology, colorimetric detection, and wireless communications into a compact and rugged portable device. The detection method used is the molybdenum yellow method, in which a phosphate-containing sample is mixed with a reagent containing ammonium metavanadate and ammonium molybdate in an acidic medium. A yellow-coloured compound is generated and the absorption of this compound is measured using a light emitting diode (LED) light source and a photodiode detector. The absorption is directly proportional to the phosphate concentration in the original sample. In this paper we describe the application of this phosphate sensor to the analysis of wastewater at a municipal wastewater treatment plant in Co. Kildare, Ireland.

An E-Learning Tool for The Self-Study of Mathematics for the CPE Examination

In this paper, we give an overview of an online elearning tool which has been developed for kids aged from nine to eleven years old in Mauritius for the self-study of Mathematics in order to prepare them for the CPE examination. The software does not intend to render obsolete the existing pedagogical approaches. Nowadays, the teaching-learning process is mainly focused towards the class-room model. Moreover, most of the e-learning platforms that exist are simply static ways of delivering resources using the internet. There is nearly no interaction between the learner and the tool. Our application will enable students to practice exercises online and also work out sample examination papers. Another interesting feature is that the kid will not have to wait for someone to correct the work as the correction will be done online and on the spot. Additional feedback is also provided for some exercises.

Removal of Malachite Green from Aqueous Solution using Hydrilla verticillata -Optimization, Equilibrium and Kinetic Studies

In this study, the sorption of Malachite green (MG) on Hydrilla verticillata biomass, a submerged aquatic plant, was investigated in a batch system. The effects of operating parameters such as temperature, adsorbent dosage, contact time, adsorbent size, and agitation speed on the sorption of Malachite green were analyzed using response surface methodology (RSM). The proposed quadratic model for central composite design (CCD) fitted very well to the experimental data that it could be used to navigate the design space according to ANOVA results. The optimum sorption conditions were determined as temperature - 43.5oC, adsorbent dosage - 0.26g, contact time - 200min, adsorbent size - 0.205mm (65mesh), and agitation speed - 230rpm. The Langmuir and Freundlich isotherm models were applied to the equilibrium data. The maximum monolayer coverage capacity of Hydrilla verticillata biomass for MG was found to be 91.97 mg/g at an initial pH 8.0 indicating that the optimum sorption initial pH. The external and intra particle diffusion models were also applied to sorption data of Hydrilla verticillata biomass with MG, and it was found that both the external diffusion as well as intra particle diffusion contributes to the actual sorption process. The pseudo-second order kinetic model described the MG sorption process with a good fitting.

Simulation of Water Droplet on Horizontally Smooth and Rough Surfaces Using Quasi-Molecular Modelling

We developed a method based on quasi-molecular modelling to simulate the fall of water drops on horizontally smooth and rough surfaces. Each quasi-molecule was a group of particles that interacted in a fashion entirely analogous to classical Newtonian molecular interactions. When a falling water droplet was simulated at low impact velocity on both smooth and rough surfaces, the droplets moved periodically (i.e. the droplets moved up and down for a certain period, finally they stopped moving and reached a steady state), spreading and recoiling without splash or break-up. Spreading rates of falling water droplets increased rapidly as time increased until the spreading rate reached its steady state at time t ~ 0.25 s for rough surface and t ~ 0.40 s for smooth surface. The droplet height above both surfaces decreased as time increased, remained constant after the droplet diameter attained a maximum value and reached its steady state at time t ~ 0.4 s. However, rough surface had higher spreading rates of falling water droplets and lower height on the surface than smooth one.

The Response Relation between Climate Change and NDVI over the Qinghai-Tibet plateau

Based on a long-term vegetation index dataset of NDVI and meteorological data from 68 meteorological stations in the Qinghai-Tibet plateau and their relations with major climate factors were analyzed. The results show the following: 1) The linear trends of temperature in the Qinghai-Tibet plateau indicate that the temperature in the plateau generally increased, but it rose faster in the last 20 years. 2) The most significant NDVI increase occurred in the eastern and southern plateau. However, the western and northern plateau demonstrate a decreasing trend. 3) There is a significant positive linear correlation between NDVI and temperature and a negative correlation between NDVI and mean wind speed. However, no significant statistical relationship was found between NDVI and relative humidity, precipitation or sunshine duration.4) The changes in NDVI for the plateau are driven by temperature-precipitation, but for the desert and forest areas, the relation changes to precipitation-temperature-wind velocity and wind velocity-temperature-precipitation.

Kinetic Modeling of the Fischer-Tropsch Reactions and Modeling Steady State Heterogeneous Reactor

The rate of production of main products of the Fischer-Tropsch reactions over Fe/HZSM5 bifunctional catalyst in a fixed bed reactor is investigated at a broad range of temperature, pressure, space velocity, H2/CO feed molar ratio and CO2, CH4 and water flow rates. Model discrimination and parameter estimation were performed according to the integral method of kinetic analysis. Due to lack of mechanism development for Fisher – Tropsch Synthesis on bifunctional catalysts, 26 different models were tested and the best model is selected. Comprehensive one and two dimensional heterogeneous reactor models are developed to simulate the performance of fixed-bed Fischer – Tropsch reactors. To reduce computational time for optimization purposes, an Artificial Feed Forward Neural Network (AFFNN) has been used to describe intra particle mass and heat transfer diffusion in the catalyst pellet. It is seen that products' reaction rates have direct relation with H2 partial pressure and reverse relation with CO partial pressure. The results show that the hybrid model has good agreement with rigorous mechanistic model, favoring that the hybrid model is about 25-30 times faster.