Fast Factored DCT-LMS Speech Enhancement for Performance Enhancement of Digital Hearing Aid

Background noise is particularly damaging to speech intelligibility for people with hearing loss especially for sensorineural loss patients. Several investigations on speech intelligibility have demonstrated sensorineural loss patients need 5-15 dB higher SNR than the normal hearing subjects. This paper describes Discrete Cosine Transform Power Normalized Least Mean Square algorithm to improve the SNR and to reduce the convergence rate of the LMS for Sensory neural loss patients. Since it requires only real arithmetic, it establishes the faster convergence rate as compare to time domain LMS and also this transformation improves the eigenvalue distribution of the input autocorrelation matrix of the LMS filter. The DCT has good ortho-normal, separable, and energy compaction property. Although the DCT does not separate frequencies, it is a powerful signal decorrelator. It is a real valued function and thus can be effectively used in real-time operation. The advantages of DCT-LMS as compared to standard LMS algorithm are shown via SNR and eigenvalue ratio computations. . Exploiting the symmetry of the basis functions, the DCT transform matrix [AN] can be factored into a series of ±1 butterflies and rotation angles. This factorization results in one of the fastest DCT implementation. There are different ways to obtain factorizations. This work uses the fast factored DCT algorithm developed by Chen and company. The computer simulations results show superior convergence characteristics of the proposed algorithm by improving the SNR at least 10 dB for input SNR less than and equal to 0 dB, faster convergence speed and better time and frequency characteristics.

CFD Simulation of Solid-Liquid Stirred Tank with Rushton Turbine and Propeller Impeller

Stirred tanks have applications in many chemical processes where mixing is important for the overall performance of the system. In present work 5%v of the tank is filled by solid particles with diameter of 700 m that Rushton Turbine and Propeller impeller is used for stirring. An Eulerian-Eulerian Multi Fluid Model coupled and for modeling rotating of impeller, moving reference frame (MRF) technique was used and standard-k- model was selected for turbulency. Flow field, radial velocity and axial distribution of solid for both of impellers was investigation and comparison. Comparisons of simulation results between Rushton Turbine and propeller impeller shows that final quality of solid-liquid slurry in different rotating speed for propeller impeller is better than the Rushton Turbine.

Comparative Study of Drip and Furrow Irrigation Methods at Farmer-s Field in Umarkot

An experiment was conducted on the comparative study of drip and furrow irrigation methods at the farmer-s field in Umar Kot. The total area under experiment about 4000m2 was divided into two equal portions. One portion about 40m X 50m was occupied by drip and the other portion about 40m X 50m by furrow irrigation method. Soil at the experimental site was clay loam in texture for 0-60cm depth; average dry bulk density and field capacity was 1.16g/cm3 and 28.5% respectively. The results reveal that the drip irrigation method saved 56.4% water and gave 22% more yield as compared to that of furrow irrigation method. Higher water use efficiency about 4.87 was obtained in drip irrigation method; whereas lower water used efficiency about 1.66 was obtained in furrow irrigation method. The present study suggests farming community to adopt drip irrigation method instead of old traditional flooding methods.

An Empirical Analysis of the Board Composition Concerning Logistics Competencies

Empirical insights into the implementation of logistics competencies at the top management level are scarce. This paper addresses this issue with an explorative approach which is based on a dataset of 872 observations in the years 2000, 2004 and 2008 using quantitative content analysis from annual reports of the 500 publicly listed firms with the highest global research and development expenditures according to the British Department for Business Innovation and Skills. We find that logistics competencies are more pronounced in Asian companies than in their European or American counterparts. On an industrial level the results are quite mixed. Using partial point-biserial correlations we show that logistics competencies are positively related to financial performance.

Conceptualization of the Attractive Work Environment and Organizational Activity for Humans in Future Deep Mines

The purpose of this paper is to conceptualize a futureoriented human work environment and organizational activity in deep mines that entails a vision of good and safe workplace. Futureoriented technological challenges and mental images required for modern work organization design were appraised. It is argued that an intelligent-deep-mine covering the entire value chain, including environmental issues and with work organization that supports good working and social conditions towards increased human productivity could be designed. With such intelligent system and work organization in place, the mining industry could be seen as a place where cooperation, skills development and gender equality are key components. By this perspective, both the youth and women might view mining activity as an attractive job and the work environment as a safe, and this could go a long way in breaking the unequal gender balance that exists in most mines today.

A Hybrid Neural Network and Gravitational Search Algorithm (HNNGSA) Method to Solve well known Wessinger's Equation

This study presents a hybrid neural network and Gravitational Search Algorithm (HNGSA) method to solve well known Wessinger's equation. To aim this purpose, gravitational search algorithm (GSA) technique is applied to train a multi-layer perceptron neural network, which is used as approximation solution of the Wessinger's equation. A trial solution of the differential equation is written as sum of two parts. The first part satisfies the initial/ boundary conditions and does not contain any adjustable parameters and the second part which is constructed so as not to affect the initial/boundary conditions. The second part involves adjustable parameters (the weights and biases) for a multi-layer perceptron neural network. In order to demonstrate the presented method, the obtained results of the proposed method are compared with some known numerical methods. The given results show that presented method can introduce a closer form to the analytic solution than other numerical methods. Present method can be easily extended to solve a wide range of problems.

Adsorption of Copper by using Microwave Incinerated Rice Husk Ash (MIRHA)

Many non-conventional adsorbent have been studied as economic alternative to commercial activated carbon and mostly agricultural waste have been introduced such as rubber leaf powder and hazelnut shell. Microwave Incinerated Rice Husk Ash (MIRHA), produced from the rice husk is one of the low-cost materials that were used as adsorbent of heavy metal. The aim of this research was to study the feasibility of using MIRHA500 and MIRHA800 as adsorbent for the removal of Cu(II) metal ions from aqueous solutions by the batch studies. The adsorption of Cu(II) into MIRHA500 and MIRH800 favors Fruendlich isotherm and imply pseudo – kinetic second order which applied chemisorptions

Investigation of Temperature-Dependent Electrical Properties of Tc-CuPc: PCBM Bulk Heterojunction (BHJ) under Dark Conditions

An organic bulk heterojunction (BHJ) was fabricated using a blended film containing Copper (II) tetrakis(4-acumylphenoxy) phthalocyanine (Tc-CuPc) along with [6,6]-Phenyl C61 butyric acid methyl ester (PCBM). Weight ratio between Tc-CuPc and PCBM was 1:1. The electrical properties of Tc-CuPc: PCBM BHJ were examined. Rectifying nature of the BHJ was displayed by current-voltage (I-V) curves, recorded in dark and at various temperatures. At low voltages, conduction was ohmic succeeded by space-charge limiting current (SCLC) conduction at higher voltages in which exponential trap distribution was dominant. Series resistance, shunt resistance, ideality factor, effective barrier height and mobility at room temperature were found to be 526 4, 482 k4, 3.7, 0.17 eV and 2×10-7 cm2V-1s-1 respectively. Temperature effect towards different BHJ parameters was observed under dark condition.

Effects of Coupling Agent and Flame Retardant on the Performances of Oil Palm Empty Fruit Bunch Fiber Reinforced Polypropylene Composites

Alkali treated oil palm empty fruit bunch (EFB) fibres (TEFBF) and untreated EFBF fibers (UEFBF) were incorporated in polypropylene (PP) with and without malic anhydride grafted PP (MAPP) and magnesium hydroxide as flame retardant (FR) to produce TEFBF-PP and UEFBF-PP composites by the melt casting method. The composites were characterized by mechanical and burning tests along with a scanning electron microscope and Fourier transform infrared spectroscopy. The significant improvement in flexural modulus (133%) and flame retardant property (60%) of TEFBF-PP composite with MAPP and FR is observed. The improved mechanical property is discussed by the development of encapsulated textures.

Online Signature Verification Using Angular Transformation for e-Commerce Services

The rapid growth of e-Commerce services is significantly observed in the past decade. However, the method to verify the authenticated users still widely depends on numeric approaches. A new search on other verification methods suitable for online e-Commerce is an interesting issue. In this paper, a new online signature-verification method using angular transformation is presented. Delay shifts existing in online signatures are estimated by the estimation method relying on angle representation. In the proposed signature-verification algorithm, all components of input signature are extracted by considering the discontinuous break points on the stream of angular values. Then the estimated delay shift is captured by comparing with the selected reference signature and the error matching can be computed as a main feature used for verifying process. The threshold offsets are calculated by two types of error characteristics of the signature verification problem, False Rejection Rate (FRR) and False Acceptance Rate (FAR). The level of these two error rates depends on the decision threshold chosen whose value is such as to realize the Equal Error Rate (EER; FAR = FRR). The experimental results show that through the simple programming, employed on Internet for demonstrating e-Commerce services, the proposed method can provide 95.39% correct verifications and 7% better than DP matching based signature-verification method. In addition, the signature verification with extracting components provides more reliable results than using a whole decision making.

Influence of Flash Temperature on Exergetical Performance of Organic Flash Cycle

Organic Flash Cycle (OFC) has potential of improving efficiency for recovery of low temperature heat sources mainly due to reducing temperature mismatch in the heat exchanger. In this work exergetical performance analysis of ORC is conducted for recovery of low grade heat source. Effects of system parameters such as flash evaporation temperature or heating temperature are theoretically investigated on the exergy destructions (anergies) at various components of the system as well as exergy efficiency. Results show that exergy efficiency has a peak with respect to the flash temperature, and the optimum flash temperature increases with the heating temperature. The component where the largest exergy destruction occurs varies with the flash temperature or heating temperature.

The Culture of Interethnic Concord in Kazakhstan: Peculiarities of Formation and Development

This paper describes the historical development of interethnic concord in the Republic of Kazakhstan, and emphasizes the role of tolerance mentality of the Kazakh people in ethno-political policy of the country. Moreover, pointing out interethnic concord as a powerful stabilizing factor, it analyses the specifics of interethnic policy in multinational Kazakh society. It summarizes that the culture of interethnic concord can be a model of ethno- political policy of Kazakhstan.

A Novel Pilot Scheme for Frequency Offset and Channel Estimation in 2x2 MIMO-OFDM

The Carrier Frequency Offset (CFO) due to timevarying fading channel is the main cause of the loss of orthogonality among OFDM subcarriers which is linked to inter-carrier interference (ICI). Hence, it is necessary to precisely estimate and compensate the CFO. Especially for mobile broadband communications, CFO and channel gain also have to be estimated and tracked to maintain the system performance. Thus, synchronization pilots are embedded in every OFDM symbol to track the variations. In this paper, we present the pilot scheme for both channel and CFO estimation where channel estimation process can be carried out with only one OFDM symbol. Additional, the proposed pilot scheme also provides better performance in CFO estimation comparing with the conventional orthogonal pilot scheme due to the increasing of signal-tointerference ratio.

Introducing Sequence-Order Constraint into Prediction of Protein Binding Sites with Automatically Extracted Templates

Search for a tertiary substructure that geometrically matches the 3D pattern of the binding site of a well-studied protein provides a solution to predict protein functions. In our previous work, a web server has been built to predict protein-ligand binding sites based on automatically extracted templates. However, a drawback of such templates is that the web server was prone to resulting in many false positive matches. In this study, we present a sequence-order constraint to reduce the false positive matches of using automatically extracted templates to predict protein-ligand binding sites. The binding site predictor comprises i) an automatically constructed template library and ii) a local structure alignment algorithm for querying the library. The sequence-order constraint is employed to identify the inconsistency between the local regions of the query protein and the templates. Experimental results reveal that the sequence-order constraint can largely reduce the false positive matches and is effective for template-based binding site prediction.

An Anatomically-Based Model of the Nerves in the Human Foot

Sensory nerves in the foot play an important part in the diagnosis of various neuropathydisorders, especially in diabetes mellitus.However, a detailed description of the anatomical distribution of the nerves is currently lacking. A computationalmodel of the afferent nerves inthe foot may bea useful tool for the study of diabetic neuropathy. In this study, we present the development of an anatomically-based model of various major sensory nerves of the sole and dorsal sidesof the foot. In addition, we presentan algorithm for generating synthetic somatosensory nerve networks in the big-toe region of a right foot model. The algorithm was based on a modified version of the Monte Carlo algorithm, with the capability of being able to vary the intra-epidermal nerve fiber density in differentregionsof the foot model. Preliminary results from the combinedmodel show the realistic anatomical structure of the major nerves as well as the smaller somatosensory nerves of the foot. The model may now be developed to investigate the functional outcomes of structural neuropathyindiabetic patients.

The Application of an Experimental Design for the Defect Reduction of Electrodeposition Painting on Stainless Steel Washers

The purpose of this research is to reduce the amount of incomplete coating of stainless steel washers in the electrodeposition painting process by using an experimental design technique. The surface preparation was found to be a major cause of painted surface quality. The influence of pretreating and painting process parameters, which are cleaning time, chemical concentration and shape of hanger were studied. A 23 factorial design with two replications was performed. The analysis of variance for the designed experiment showed the great influence of cleaning time and shape of hanger. From this study, optimized cleaning time was determined and a newly designed electrical conductive hanger was proved to be superior to the original one. The experimental verification results showed that the amount of incomplete coating defects decreased from 4% to 1.02% and operation cost decreased by 10.5%.

Nitrogen Removal in a High-efficiency Denitrification/Oxic Filter treatment System for Advanced Treatment of Municipal Wastewater

Biological treatment of secondary effluent wastewater by two combined denitrification/oxic filtration systems packed with Lock type(denitrification filter) and ceramic ball (oxic filter) has been studied for 5months. Two phases of operating conditions were carried out with an influent nitrate and ammonia concentrations varied from 5.8 to 11.7mg/L and 5.4 to 12.4mg/L,respectively. Denitrification/oxic filter treatment system were operated under an EBCT (Empty Bed Contact Time) of 4h at system recirculation ratio in the range from 0 to 300% (Linear Velocity increased 19.5m/d to 78m/d). The system efficiency of denitrification , nitrification over 95% respectively. Total nitrogen and COD removal range from 54.6%(recirculation 0%) to 92.3%(recirculation 300%) and 10% to 62.5%, respectively.

The Analysis of Radial/Axial Error Motion on a Precision Rotation Stage

Rotating stages in semiconductor, display industry and many other fields require challenging accuracy to perform their functions properly. Especially, Axis of rotation error on rotary system is significant; such as the spindle error motion of the aligner, wire bonder and inspector machine which result in the poor state of manufactured goods. To evaluate and improve the performance of such precision rotary stage, unessential movements on the other 5 degrees of freedom of the rotary stage must be measured and analyzed. In this paper, we have measured the three translations and two tilt motions of a rotating stage with high precision capacitive sensors. To obtain the radial error motion from T.I.R (Total Indicated Reading) of radial direction, we have used Donaldson's reversal technique. And the axial components of the spindle tilt error motion can be obtained accurately from the axial direction outputs of sensors by Estler face motion reversal technique. Further more we have defined and measured the sensitivity of positioning error to the five error motions.

Dynamics of a Vapour Bubble inside a Vertical Rigid Cylinder in the Absence of Buoyancy Forces

In this paper, growth and collapse of a vapour bubble generated due to a local energy input inside a rigid cylinder and in the absence of buoyancy forces is investigated using Boundary Integral Equation Method and Finite Difference Method .The fluid is treated as potential flow and Boundary Integral Equation Method is used to solve Laplace-s equation for velocity potential. Different ratios of the diameter of the rigid cylinder to the maximum radius of the bubble are considered. Results show that during the collapse phase of the bubble inside a vertical rigid cylinder, two liquid micro jets are developed on the top and bottom sides of the vapour bubble and are directed inward. It is found that by increasing the ratio of the cylinder diameter to the maximum radius of the bubble, the rate of the growth and collapse phases of the bubble increases and the life time of the bubble decreases.

Combining Variable Ordering Heuristics for Improving Search Algorithms Performance

Variable ordering heuristics are used in constraint satisfaction algorithms. Different characteristics of various variable ordering heuristics are complementary. Therefore we have tried to get the advantages of all heuristics to improve search algorithms performance for solving constraint satisfaction problems. This paper considers combinations based on products and quotients, and then a newer form of combination based on weighted sums of ratings from a set of base heuristics, some of which result in definite improvements in performance.