Frequency Response Analysis of Reinforced- Soil Retaining Walls with Polymeric Strips

Few studies have been conducted on polymeric strip and the behavior of soil retaining walls. This paper will present the effect of frequency on the dynamic behavior of reinforced soil retaining walls with polymeric strips. The frequency content describes how the amplitude of a ground motion is distributed among different frequencies. Since the frequency content of an earthquake motion will strongly influence the effects of that motion, the characterization of the motion cannot be completed without the consideration of its frequency content. The maximum axial force of reinforcements and horizontal displacement of the reinforced walls are focused in this research. To clarify the dynamic behavior of reinforced soil retaining walls with polymeric strips, a numerical modeling using Finite Difference Method is benefited. As the results indicate, the frequency of input base acceleration has an important effect on the behavior of these structures. Because of resonant in the system, where the frequency of the input dynamic load is equal to the natural frequency of the system, the maximum horizontal displacement and the maximum axial forces in polymeric strips is occurred. Moreover, they were to increase the structure flexibility because of the main advantages of polymeric strips; i.e. being simple method of construction, having a homogeneous behavior with soils, and possessing long durability, which are of great importance in dynamic analysis.

Parallel Joint Channel Coding and Cryptography

Method of Parallel Joint Channel Coding and Cryptography has been analyzed and simulated in this paper. The method is an extension of Soft Input Decryption with feedback, which is used for improvement of channel decoding of secured messages. Parallel Joint Channel Coding and Cryptography results in improved coding gain of channel decoding, which achieves more than 2 dB. Such results are an implication of a combination of receiver components and their interoperability.

Multi-objective Optimization of Vehicle Passive Suspension with a Two-Terminal Mass Using Chebyshev Goal Programming

To improve the dynamics response of the vehicle passive suspension, a two-terminal mass is suggested to connect in parallel with the suspension strut. Three performance criteria, tire grip, ride comfort and suspension deflection, are taken into consideration to optimize the suspension parameters. However, the three criteria are conflicting and non-commensurable. For this reason, the Chebyshev goal programming method is applied to find the best tradeoff among the three objectives. A simulation case is presented to describe the multi-objective optimization procedure. For comparison, the Chebyshev method is also employed to optimize the design of a conventional passive suspension. The effectiveness of the proposed design method has been clearly demonstrated by the result. It is also shown that the suspension with a two-terminal mass in parallel has better performance in terms of the three objectives.

A Hybrid Technology for a Multiagent Consultation System in Obesity Domain

In this paper, the authors present architecture of a multi agent consultation system for obesity related problems, which hybrid the technology of an expert system (ES) and an intelligent agent (IA). The strength of the ES which is capable of pulling the expert knowledge is consulted and presented to the end user via the autonomous and friendly pushing environment of the intelligent agent.

A Review of in-orbit Observations of Radiation- Induced Effects in Commercial Memories onboard Alsat-1

This paper presents a review of an 8-year study on radiation effects in commercial memory devices operating within the main on-board computer system OBC386 of the Algerian microsatellite Alsat-1. A statistical analysis of single-event upset (SEU) and multiple-bit upset (MBU) activity in these commercial memories shows that the typical SEU rate at alsat-1's orbit is 4.04 × 10-7 SEU/bit/day, where 98.6% of these SEUs cause single-bit errors, 1.22% cause double-byte errors, and the remaining SEUs result in multiple-bit and severe errors.

A Simulation Model for the H-gate PDSOI MOSFET

The floating body effect is a serious problem for the PDSOI MOSFET, and the H-gate layout is frequently used as the body contact to eliminate this effect. Unfortunately, most of the standard commercial SOI MOSFET model is for the device with finger gate, the necessity of the new models for the H-gate device arises. A simulation model for the H-gate PDSOI MOSFET is proposed based on the 0.35μm PDSOI process developed by the Institute of Microelectronics of the Chinese Academy of Sciences (IMECAS), and then the model is well verified by the ring-oscillator.

A Model for Analysis the Induced Voltage of 115 kV On-Line Acting on Neighboring 22 kV Off-Line

This paper presents a model for analysis the induced voltage of transmission lines (energized) acting on neighboring distribution lines (de-energized). From environmental restrictions, 22 kV distribution lines need to be installed under 115 kV transmission lines. With the installation of the two parallel circuits like this, they make the induced voltage which can cause harm to operators. This work was performed with the ATP-EMTP modeling to analyze such phenomenon before field testing. Simulation results are used to find solutions to prevent danger to operators who are on the pole.

La promoted Ni/α-Al2O3 Catalysts for Syngas Methanation

The Ni/α-Al2O3 catalysts with different amounts of La as promoter from 0 to 4 wt % were prepared, characterized and their catalytic activity was investigated in syngas methanation reaction. Effects of reaction temperature and lanthanum loading on carbon oxides conversion and methane selectivity were also studied. Adding certain amount of lanthanum to 10Ni /α-Al2O3 catalysts can decrease the average NiO crystallite diameter which leads to higher activity and stability while excessive addition would cause deactivation quickly. Stability on stream towards deactivation was observed up to 800 min at 500 °C, 0.1MPa and 600000 mL·g-1·h-1.

Comparison between Turbo Code and Convolutional Product Code (CPC) for Mobile WiMAX

Mobile WiMAX is a broadband wireless solution that enables convergence of mobile and fixed broadband networks through a common wide area broadband radio access technology and flexible network architecture. It adopts Orthogonal Frequency Division Multiple Access (OFDMA) for improved multi-path performance in Non-Line-Of-Sight (NLOS) environments. Scalable OFDMA (SOFDMA) is introduced in the IEEE 802e[1]. WIMAX system uses one of different types of channel coding but The mandatory channel coding scheme is based on binary nonrecursive Convolutional Coding (CC). There are other several optional channel coding schemes such as block turbo codes, convolutional turbo codes, and low density parity check (LDPC). In this paper a comparison between the performance of WIMAX using turbo code and using convolutional product code (CPC) [2] is made. Also a combination between them had been done. The CPC gives good results at different SNR values compared to both the turbo system, and the combination between them. For example, at BER equal to 10-2 for 128 subcarriers, the amount of improvement in SNR equals approximately 3 dB higher than turbo code and equals approximately 2dB higher than the combination respectively. Several results are obtained at different modulating schemes (16QAM and 64QAM) and different numbers of sub-carriers (128 and 512).

A Robust Visual Tracking Algorithm with Low-Rank Region Covariance

Region covariance (RC) descriptor is an effective and efficient feature for visual tracking. Current RC-based tracking algorithms use the whole RC matrix to track the target in video directly. However, there exist some issues for these whole RCbased algorithms. If some features are contaminated, the whole RC will become unreliable, which results in lost object-tracking. In addition, if some features are very discriminative to the background, other features are still processed and thus reduce the efficiency. In this paper a new robust tracking method is proposed, in which the whole RC matrix is decomposed into several low rank matrices. Those matrices are dynamically chosen and processed so as to achieve a good tradeoff between discriminability and complexity. Experimental results have shown that our method is more robust to complex environment changes, especially either when occlusion happens or when the background is similar to the target compared to other RC-based methods.

A Hybrid Scheme for on-Line Diagnostic Decision Making Using Optimal Data Representation and Filtering Technique

The early diagnostic decision making in industrial processes is absolutely necessary to produce high quality final products. It helps to provide early warning for a special event in a process, and finding its assignable cause can be obtained. This work presents a hybrid diagnostic schmes for batch processes. Nonlinear representation of raw process data is combined with classification tree techniques. The nonlinear kernel-based dimension reduction is executed for nonlinear classification decision boundaries for fault classes. In order to enhance diagnosis performance for batch processes, filtering of the data is performed to get rid of the irrelevant information of the process data. For the diagnosis performance of several representation, filtering, and future observation estimation methods, four diagnostic schemes are evaluated. In this work, the performance of the presented diagnosis schemes is demonstrated using batch process data.

Increased Capacity of Information Hiding in LSB-s Method for Text and Image

Steganography, derived from Greek, literally means “covered writing". It includes a vast array of secret communications methods that conceal the message-s very existence. These methods include invisible inks, microdots, character arrangement, digital signatures, covert channels, and spread spectrum communications. This paper proposes a new improved version of Least Significant Bit (LSB) method. The approach proposed is simple for implementation when compared to Pixel value Differencing (PVD) method and yet achieves a High embedding capacity and imperceptibility. The proposed method can also be applied to 24 bit color images and achieve embedding capacity much higher than PVD.

Maximizing Sum-Rate for Multi-User Two-Way Relaying Networks with ANC Protocol

In this paper we study the resource allocation problem for an OFDMA based cooperative two-way relaying (TWR) network. We focus on amplify and forward (AF) analog network coding (ANC) protocol. An optimization problem for two basic resources namely, sub-carrier and power is formulated for multi-user TWR networks. A joint optimal optimization problem is investigated and two-step low complexity sub-optimal resource allocation algorithm is proposed for multi-user TWR networks with ANC protocol. The proposed algorithm has been evaluated in term of total achievable system sum-rate and achievable individual sum-rate for each userpair. The good tradeoff between system sum-rate and fairness is observed in the two-step proportional resource allocation scheme.

Fast Search for MPEG Video Clips Using Adjacent Pixel Intensity Difference Quantization Histogram Feature

In this paper, we propose a novel fast search algorithm for short MPEG video clips from video database. This algorithm is based on the adjacent pixel intensity difference quantization (APIDQ) algorithm, which had been reliably applied to human face recognition previously. An APIDQ histogram is utilized as the feature vector of the frame image. Instead of fully decompressed video frames, partially decoded data, namely DC images are utilized. Combined with active search [4], a temporal pruning algorithm, fast and robust video search can be realized. The proposed search algorithm has been evaluated by 6 hours of video to search for given 200 MPEG video clips which each length is 15 seconds. Experimental results show the proposed algorithm can detect the similar video clip in merely 80ms, and Equal Error Rate (ERR) of 3 % is achieved, which is more accurately and robust than conventional fast video search algorithm.

Fail-safe Modeling of Discrete Event Systems using Petri Nets

In this paper the effect of faults in the elements and parts of discrete event systems is investigated. In the occurrence of faults, some states of the system must be changed and some of them must be forbidden. For this goal, different states of these elements are examined and a model for fail-safe behavior of each state is introduced. Replacing new models of the target elements in the preliminary model by a systematic method, leads to a fail-safe discrete event system.

Motion Control of a Ball Throwing Robot with a Flexible Robotic Arm

Motion control of flexible arms is more difficult than that of rigid arms, however utilizing its dynamics enables improved performance such as a fast motion in short operation time. This paper investigates a ball throwing robot with one rigid link and one flexible link. This robot throws a ball at a set speed with a proper control torque. A mathematical model of this ball throwing robot is derived through Hamilton’s principle. Several patterns of torque input are designed and tested through the proposed simulation models. The parameters of each torque input pattern is optimized and determined by chaos embedded vector evaluated particle swarm optimization (CEVEPSO). Then, the residual vibration of the manipulator after throwing is suppressed with input shaping technique. Finally, a real experiment is set up for the model checking.

An Analysis of the Optimization Condition of Plasma Generator for Air Conditioner System

This research aimed to develop plasma system used in air conditioners. This developed plasma system could be installed in the air conditioners - all split type. The quality of air could be improved to be equal to present plasma system. Development processes were as follows: 1) to study the plasma system used in the air conditioners, 2) to design a plasma generator, 3) to develop the plasma generator, and 4) to test its performance in many types of the air conditioners. This plasma system was developed by AC high voltage – 14 kv with a frequency of 50 kHz. Carbon was a conductor to generate arc in air purifier system. The research was tested by installing the plasma generator in the air conditioners - wall type. Whereas, there were 3 types of installations: air flow out, air flow in, and room center. The result of the plasma generator installed in the air conditioners, split type, revealed that the air flow out installation provided the highest average of o-zone at 223 mg/h. This type of installation provided the highest efficiency of air quality improvement. Moreover, the air flow in installation and the room center installation provided the average of the o-zone at 163 mg/h and 64 mg/h, respectively.

A Study of Replacement Policies for Warranty Products with Different Failure Rate

This paper provides a replacement policy for warranty products with different failure rate from the consumer-s viewpoint. Assume that the product is replaced once within a finite planning horizon, and the failure rate of the second product is lower than the failure rate of the first product. Within warranty period (WP), the failed product is corrected by minimal repair without any cost to the consumers. After WP, the failed product is repaired with a fixed repair cost to the consumers. However, each failure incurs a fixed downtime cost to the consumers over a finite planning horizon. In this paper, we derive the model of the expected total disbursement cost within a finite planning horizon and some properties of the optimal replacement policy under some reasonable conditions are obtained. Finally, numerical examples are given to illustrate the features of the optimal replacement policy under various maintenance costs.

Sericulture for Employment Generation among the Tribal- A Study of Two Trible Block of Raigarh Dist. [C.G.] India

Among many agro- based cottage industries in India sericulture has been promoted as an agro-based, labor intensive, rural oriented cottage industry, providing gainful employment mainly to the weaker and marginalized section of the society specially tribal. Sericulture occupies the place of pride in the rural economy can be practiced even with very low land holding, low gestation, high returns make sericulture an ideal program, requiring little capital investment. In 2010-2011 the employment in sericulture sector was 72.5 lakh persons. The involvement of landless rural people in tasar sericulture is because they understood its potential for rural and tribal upliftment. This article demonstrates that certain developmental initiatives have been playing an important role in the socio-economic progress of tribal masses in Raigarh district and explains the increased returns from sericulture as a result of development programs. The study concludes with some suggestions to improve the long term feasibility of sericulture.

Biological Diagnosis and Physiopathology of von Willebrand-s Disease in a Part of the Algerian Population in the East and the South

Von Willebrand-s disease is the most common inherited bleeding disorder in humans, it caused by qualitative abnormalities of the von Willebrand factor (vWF). Our objective is to determine the prevalence of this disease at part of the Algerian population in the East and the South by a biological diagnosis based on specific biological tests (automated platelet count, the bleeding time (TS), the time of cephalin + activator (TCA), measure of the prothrombin rate (TP), vWF rate and factor VIII rate, Molecular electrophoresis of vWF multimers in agarose gel in the presence of SDS). Four patients of type III or severe Willebrand-s disease were found on 200 suspect cases. All cases are showed a deficit in vWF rate (< 5%), and factor VIII (P