Abstract: The utilization of electronic medical record (EMR) data to establish the disease diagnosis model has become an important research content of biomedical informatics. Deep learning can automatically extract features from the massive data, which brings about breakthroughs in the study of EMR data. The challenge is that deep learning lacks semantic knowledge, which leads to impracticability in medical science. This research proposes a method of incorporating lexical-semantic knowledge from abundant entities into a convolutional neural network (CNN) framework for pediatric disease diagnosis. Firstly, medical terms are vectorized into Lexical Semantic Vectors (LSV), which are concatenated with the embedded word vectors of word2vec to enrich the feature representation. Secondly, the semantic distribution of medical terms serves as Semantic Decision Guide (SDG) for the optimization of deep learning models. The study evaluates the performance of LSV-SDG-CNN model on four kinds of Chinese EMR datasets. Additionally, CNN, LSV-CNN, and SDG-CNN are designed as baseline models for comparison. The experimental results show that LSV-SDG-CNN model outperforms baseline models on four kinds of Chinese EMR datasets. The best configuration of the model yielded an F1 score of 86.20%. The results clearly demonstrate that CNN has been effectively guided and optimized by lexical-semantic knowledge, and LSV-SDG-CNN model improves the disease classification accuracy with a clear margin.
Abstract: Over the past decade, there has been a steep rise in
the data-driven analysis in major areas of medicine, such as clinical
decision support system, survival analysis, patient similarity analysis,
image analytics etc. Most of the data in the field are well-structured
and available in numerical or categorical formats which can be used
for experiments directly. But on the opposite end of the spectrum,
there exists a wide expanse of data that is intractable for direct
analysis owing to its unstructured nature which can be found in the
form of discharge summaries, clinical notes, procedural notes which
are in human written narrative format and neither have any relational
model nor any standard grammatical structure. An important step
in the utilization of these texts for such studies is to transform
and process the data to retrieve structured information from the
haystack of irrelevant data using information retrieval and data mining
techniques. To address this problem, the authors present Q-Map in
this paper, which is a simple yet robust system that can sift through
massive datasets with unregulated formats to retrieve structured
information aggressively and efficiently. It is backed by an effective
mining technique which is based on a string matching algorithm
that is indexed on curated knowledge sources, that is both fast
and configurable. The authors also briefly examine its comparative
performance with MetaMap, one of the most reputed tools for medical
concepts retrieval and present the advantages the former displays over
the latter.
Abstract: The proliferation of health data standards today is somewhat overlapping and conflicting, resulting in market confusion and leading to increasing proprietary interests. The government role and support in standardization for health data are thought to be crucial in order to establish credible standards for the next decade, to maximize interoperability across the health sector, and to decrease the risks associated with the implementation of non-standard systems. The normative literature missed out the exploration of the different steps required to be undertaken by the government towards the development of national health data standards. Based on the lessons learned from a qualitative study investigating the different issues to the adoption of health data standards in the major tertiary hospitals in Saudi Arabia and the opinions and feedback from different experts in the areas of data exchange and standards and medical informatics in Saudi Arabia and UK, a list of steps required towards the development of national health data standards was constructed. Main steps are the existence of: a national formal reference for health data standards, an agreed national strategic direction for medical data exchange, a national medical information management plan and a national accreditation body, and more important is the change management at the national and organizational level. The outcome of this study can be used by academics and practitioners to develop the planning of health data standards, and in particular those in developing countries.
Abstract: Leprosy is an infectious disease caused by
Mycobacterium Leprae, this disease, generally, compromises
the neural fibers, leading to the development of disability.
Disabilities are changes that limit daily activities or social life
of a normal individual. When comes to leprosy, the study of
disability considered the functional limitation (physical
disabilities), the limitation of activity and social participation,
which are measured respectively by the scales: EHF, SALSA
and PARTICIPATION SCALE. The objective of this work is
to propose an on-line monitoring of leprosy patients, which is
based on information scales EHF, SALSA and
PARTICIPATION SCALE. It is expected that the proposed
system is applied in monitoring the patient during treatment
and after healing therapy of the disease. The correlations that
the system is between the scales create a variety of
information, presented the state of the patient and full of
changes or reductions in disability. The system provides
reports with information from each of the scales and the
relationships that exist between them. This way, health
professionals, with access to patient information, can
intervene with techniques for the Prevention of Disability.
Through the automated scale, the system shows the level of
the patient and allows the patient, or the responsible, to take a
preventive measure. With an online system, it is possible take
the assessments and monitor patients from anywhere.
Abstract: Case based reasoning (CBR) methodology presents a foundation for a new technology of building intelligent computeraided diagnoses systems. This Technology directly addresses the problems found in the traditional Artificial Intelligence (AI) techniques, e.g. the problems of knowledge acquisition, remembering, robust and maintenance. This paper discusses the CBR methodology, the research issues and technical aspects of implementing intelligent medical diagnoses systems. Successful applications in cancer and heart diseases developed by Medical Informatics Research Group at Ain Shams University are also discussed.
Abstract: Telemedicine is brought to life by contemporary changes of our world and summarizes the entire range of services that are at the crossroad of traditional healthcare and information technology. It is believed that eHealth can help in solving critical issues of rising costs, care for ageing and housebound population, staff shortage. It is a feasible tool to provide routine as well as specialized health service as it has the potential to improve both the access to and the standard of care. eHealth is no more an optional choice. It has already made quite a way but it still remains a fantastic challenge for the future requiring cooperation and coordination at all possible levels. The strategic objectives of this paper are: 1. To start with an attempt to clarify the mass of terms used nowadays; 2. To answer the question “Who needs eHealth"; 3. To focus on the necessity of bridging telemedicine and medical (health) informatics as well as on the dual relationship between them; as well as 4. To underline the need of networking in understanding, developing and implementing eHealth.
Abstract: In this paper, the authors present architecture of a multi agent consultation system for obesity related problems, which hybrid the technology of an expert system (ES) and an intelligent agent (IA). The strength of the ES which is capable of pulling the expert knowledge is consulted and presented to the end user via the autonomous and friendly pushing environment of the intelligent agent.
Abstract: In this paper, cloud resource broker using goalbased
request in medical application is proposed. To handle recent
huge production of digital images and data in medical informatics
application, the cloud resource broker could be used by medical
practitioner for proper process in discovering and selecting correct
information and application. This paper summarizes several
reviewed articles to relate medical informatics application with
current broker technology and presents a research work in applying
goal-based request in cloud resource broker to optimize the use of
resources in cloud environment. The objective of proposing a new
kind of resource broker is to enhance the current resource
scheduling, discovery, and selection procedures. We believed that
it could help to maximize resources allocation in medical
informatics application.
Abstract: With the rapid growth in business size, today-s businesses orient Throughout thirty years local, national and international experience in medicine as a medical student, junior doctor and eventually Consultant and Professor in Anaesthesia, Intensive Care and Pain Management, I note significant generalised dissatisfaction among medical students and doctors regarding their medical education and practice. We repeatedly hear complaints from patients about the dysfunctional health care system they are dealing with and subsequently the poor medical service that they are receiving. Medical students are bombarded with lectures, tutorials, clinical rounds and various exams. Clinicians are weighed down with a never-ending array of competing duties. Patients are extremely unhappy about the long waiting lists, loss of their records and the continuous deterioration of the health care service. This problem has been reported in different countries by several authors [1,2,3]. In a trial to solve this dilemma, a genuine idea has been suggested implementing computer technology in medicine [2,3]. Computers in medicine are a medium of international communication of the revolutionary advances being made in the application of the computer to the fields of bioscience and medicine [4,5]. The awareness about using computers in medicine has recently increased all over the world. In Misr University for Science & Technology (MUST), Egypt, medical students are now given hand-held computers (Laptop) with Internet facility making their medical education accessible, convenient and up to date. However, this trial still needs to be validated. Helping the readers to catch up with the on going fast development in this interesting field, the author has decided to continue reviewing the literature, exploring the state-of-art in computer based medicine and up dating the medical professionals especially the local trainee Doctors in Egypt. In part I of this review article we will give a general background discussing the potential use of computer technology in the various aspects of the medical field including education, research, clinical practice and the health care service given to patients. Hope this will help starting changing the culture, promoting the awareness about the importance of implementing information technology (IT) in medicine, which is a field in which such help is needed. An international collaboration is recommended supporting the emerging countries achieving this target.