Native Framework of Economic Activities Development to Achieve The 1404 Iranian View Statement's Goals

Planning of economic activities development has various dimensions one of which determines adequate capacity of economic activities in provinces regarding the government-s goals. Paralleling planning goals of economic activities development including subjects being focused on the view statement is effective to better realize the statement's goals. Current paper presents a native framework for economic activities development in provincial level. Triple steps within the framework are concordant with the view statement-s goals achievement. At first step of the proposed framework, economic activities are being prioritized in terms of employment indices, and secondly economic activities regarding to the province's relative advantages are being recognized. In the third step, desirable capacity of economic activities is determined with regards to the government's goals and effective constraints in economic activities development. Development of economic activities related to the provinces- relative advantages, contributes on regional balance and on equal development of economic activities. Furthermore, results of the framework enable more confident investment, affect employment development and remove unemployment concern as the main goals of the view statement.

EFL Learners- Perceptions of Computer-Mediated Communication (CMC) to Facilitate Communication in a Foreign Language

This study explores perceptions of English as a Foreign Language (EFL) learners on using computer mediated communication technology in their learner of English. The data consists of observations of both synchronous and asynchronous communication participants engaged in for over a period of 4 months, which included online, and offline communication protocols, open-ended interviews and reflection papers composed by participants. Content analysis of interview data and the written documents listed above, as well as, member check and triangulation techniques are the major data analysis strategies. The findings suggest that participants generally do not benefit from computer-mediated communication in terms of its effect in learning a foreign language. Participants regarded the nature of CMC as artificial, or pseudo communication that did not aid their authentic communicational skills in English. The results of this study sheds lights on insufficient and inconclusive findings, which most quantitative CMC studies previously generated.

Preparation and Investigation of Photocatalytic Properties of ZnO Nanocrystals: Effect of Operational Parameters and Kinetic Study

ZnO nanocrystals with mean diameter size 14 nm have been prepared by precipitation method, and examined as photocatalyst for the UV-induced degradation of insecticide diazinon as deputy of organic pollutant in aqueous solution. The effects of various parameters, such as illumination time, the amount of photocatalyst, initial pH values and initial concentration of insecticide on the photocatalytic degradation diazinon were investigated to find desired conditions. In this case, the desired parameters were also tested for the treatment of real water containing the insecticide. Photodegradation efficiency of diazinon was compared between commercial and prepared ZnO nanocrystals. The results indicated that UV/ZnO process applying prepared nanocrystalline ZnO offered electrical energy efficiency and quantum yield better than commercial ZnO. The present study, on the base of Langmuir-Hinshelwood mechanism, illustrated a pseudo first-order kinetic model with rate constant of surface reaction equal to 0.209 mg l-1 min-1 and adsorption equilibrium constant of 0.124 l mg-1.

Scatterer Density in Edge and Coherence Enhancing Nonlinear Anisotropic Diffusion for Medical Ultrasound Speckle Reduction

This paper proposes new enhancement models to the methods of nonlinear anisotropic diffusion to greatly reduce speckle and preserve image features in medical ultrasound images. By incorporating local physical characteristics of the image, in this case scatterer density, in addition to the gradient, into existing tensorbased image diffusion methods, we were able to greatly improve the performance of the existing filtering methods, namely edge enhancing (EE) and coherence enhancing (CE) diffusion. The new enhancement methods were tested using various ultrasound images, including phantom and some clinical images, to determine the amount of speckle reduction, edge, and coherence enhancements. Scatterer density weighted nonlinear anisotropic diffusion (SDWNAD) for ultrasound images consistently outperformed its traditional tensor-based counterparts that use gradient only to weight the diffusivity function. SDWNAD is shown to greatly reduce speckle noise while preserving image features as edges, orientation coherence, and scatterer density. SDWNAD superior performances over nonlinear coherent diffusion (NCD), speckle reducing anisotropic diffusion (SRAD), adaptive weighted median filter (AWMF), wavelet shrinkage (WS), and wavelet shrinkage with contrast enhancement (WSCE), make these methods ideal preprocessing steps for automatic segmentation in ultrasound imaging.

Differential Protection for Power Transformer Using Wavelet Transform and PNN

A new approach for protection of power transformer is presented using a time-frequency transform known as Wavelet transform. Different operating conditions such as inrush, Normal, load, External fault and internal fault current are sampled and processed to obtain wavelet coefficients. Different Operating conditions provide variation in wavelet coefficients. Features like energy and Standard deviation are calculated using Parsevals theorem. These features are used as inputs to PNN (Probabilistic neural network) for fault classification. The proposed algorithm provides more accurate results even in the presence of noise inputs and accurately identifies inrush and fault currents. Overall classification accuracy of the proposed method is found to be 96.45%. Simulation of the fault (with and without noise) was done using MATLAB AND SIMULINK software taking 2 cycles of data window (40 m sec) containing 800 samples. The algorithm was evaluated by using 10 % Gaussian white noise.

Craniometric Analysis of Foramen Magnum for Estimation of Sex

Human skull is shown to exhibit numerous sexually dimorphic traits. Estimation of sex is a challenging task especially when a part of skull is brought for medicolegal investigation. The present research was planned to evaluate the sexing potential of the dimensions of foramen magnum in forensic identification by craniometric analysis. Length and breadth of the foramen magnum was measured using Vernier calipers and the area of foramen magnum was calculated. The length, breadth, and area of foramen magnum were found to be larger in males than females. Sexual dimorphism index was calculated to estimate the sexing potential of each variable. The study observations are suggestive of the limited utility of the craniometric analysis of foramen magnum during the examination of skull and its parts in estimation of sex.

A Water Reuse System in Wetland Paddy Supports the Growing Industrial Water Needs

A water reuse system in wetland paddy was simulated to supply water for industrial in this paper. A two-tank model was employed to represent the return flow of the wetland paddy.Historical data were performed for parameter estimation and model verification. With parameters estimated from the data, the model was then used to simulate a reasonable return flow rate from the wetland paddy. The simulation results show that the return flow ratio was 11.56% in the first crop season and 35.66% in the second crop season individually; the difference may result from the heavy rainfall in the second crop season. Under the existent pond with surplus active capacity, the water reuse ratio was 17.14%, and the water supplementary ratio was 21.56%. However, the pattern of rainfall, the active capacity of the pond, and the rate of water treatment limit the volume of reuse water. Increasing the irrigation water, dredging the depth of pond before rainy season and enlarging the scale of module are help to develop water reuse system to support for the industrial water use around wetland paddy.

Skin Lesion Segmentation Using Color Channel Optimization and Clustering-based Histogram Thresholding

Automatic segmentation of skin lesions is the first step towards the automated analysis of malignant melanoma. Although numerous segmentation methods have been developed, few studies have focused on determining the most effective color space for melanoma application. This paper proposes an automatic segmentation algorithm based on color space analysis and clustering-based histogram thresholding, a process which is able to determine the optimal color channel for detecting the borders in dermoscopy images. The algorithm is tested on a set of 30 high resolution dermoscopy images. A comprehensive evaluation of the results is provided, where borders manually drawn by four dermatologists, are compared to automated borders detected by the proposed algorithm, applying three previously used metrics of accuracy, sensitivity, and specificity and a new metric of similarity. By performing ROC analysis and ranking the metrics, it is demonstrated that the best results are obtained with the X and XoYoR color channels, resulting in an accuracy of approximately 97%. The proposed method is also compared with two state-of-theart skin lesion segmentation methods.

Estimation Method for the Construction of Hydrogen Society with Various Biomass Resources in Japan-Project of Cost Reductions in Biomass Transport and Feasibility for Hydrogen Station with Biomass-

It was determined that woody biomass and livestock excreta can be utilized as hydrogen resources and hydrogen produced from such sources can be used to fill fuel cell vehicles (FCVs) at hydrogen stations. It was shown that the biomass transport costs for hydrogen production may be reduced the costs for co-generation. In the Tokyo Metropolitan Area, there are only a few sites capable of producing hydrogen from woody biomass in amounts greater than 200 m3/h-the scale required for a hydrogen station to be operationally practical. However, in the case of livestock excreta, it was shown that 15% of the municipalities in this area are capable of securing sufficient biomass to be operationally practical for hydrogen production. The differences in feasibility of practical operation depend on the type of biomass.

Knowledge Based Model for Power Transformer Life Cycle Management Using Knowledge Engineering

Under the limitation of investment budget, a utility company is required to maximize the utilization of their existing assets during their life cycle satisfying both engineering and financial requirements. However, utility does not have knowledge about the status of each asset in the portfolio neither in terms of technical nor financial values. This paper presents a knowledge based model for the utility companies in order to make an optimal decision on power transformer with their utilization. CommonKADS methodology, a structured development for knowledge and expertise representation, is utilized for designing and developing knowledge based model. A case study of One MVA power transformer of Nepal Electricity Authority is presented. The results show that the reusable knowledge can be categorized, modeled and utilized within the utility company using the proposed methodologies. Moreover, the results depict that utility company can achieve both engineering and financial benefits from its utilization.

The Mechanistic Deconvolutive Image Sensor Model for an Arbitrary Pan–Tilt Plane of View

This paper presents a generalized form of the mechanistic deconvolution technique (GMD) to modeling image sensors applicable in various pan–tilt planes of view. The mechanistic deconvolution technique (UMD) is modified with the given angles of a pan–tilt plane of view to formulate constraint parameters and characterize distortion effects, and thereby, determine the corrected image data. This, as a result, does not require experimental setup or calibration. Due to the mechanistic nature of the sensor model, the necessity for the sensor image plane to be orthogonal to its z-axis is eliminated, and it reduces the dependency on image data. An experiment was constructed to evaluate the accuracy of a model created by GMD and its insensitivity to changes in sensor properties and in pan and tilt angles. This was compared with a pre-calibrated model and a model created by UMD using two sensors with different specifications. It achieved similar accuracy with one-seventh the number of iterations and attained lower mean error by a factor of 2.4 when compared to the pre-calibrated and UMD model respectively. The model has also shown itself to be robust and, in comparison to pre-calibrated and UMD model, improved the accuracy significantly.

Knowledge Management Criteria among Malaysian Organizations: An ANOVA Approach

The Knowledge Management (KM) Criteria is an essential foundation to evaluate KM outcomes. Different sets of criteria were developed and tailored by many researchers to determine the results of KM initiatives. However, literature review has emphasized on incomplete set of criteria for evaluating KM outcomes. Hence, this paper tried to address the problem of determining the criteria for measuring knowledge management outcomes among different types of Malaysian organizations. Successively, this paper was assumed to develop widely accepted criteria to measure success of knowledge management efforts for Malaysian organizations. Our analysis approach was based on the ANOVA procedure to compare a set of criteria among different types of organizations. This set of criteria was exploited from literature review. It is hoped that this study provides a better picture for different types of Malaysian organizations to establish a comprehensive set of criteria due to measure results of KM programs.

Modeling and Parametric Study for CO2/CH4 Separation Using Membrane Processes

The upgrading of low quality crude natural gas (NG) is attracting interest due to high demand of pipeline-grade gas in recent years. Membrane processes are commercially proven technology for the removal of impurities like carbon dioxide from NG. In this work, cross flow mathematical model has been suggested to be incorporated with ASPEN HYSYS as a user defined unit operation in order to design the membrane system for CO2/CH4 separation. The effect of operating conditions (such as feed composition and pressure) and membrane selectivity on the design parameters (methane recovery and total membrane area required for the separation) has been studied for different design configurations. These configurations include single stage (with and without recycle) and double stage membrane systems (with and without permeate or retentate recycle). It is shown that methane recovery can be improved by recycling permeate or retentate stream as well as by using double stage membrane systems. The ASPEN HYSYS user defined unit operation proposed in the study has potential to be applied for complex membrane system design and optimization.

Public Transport Reform in Indonesia, A Case Study in the City of Yogyakarta

The provision of urban public transport in Indonesia is not free of problems. Some of the problems include: an overall lack of capacity, lack of quality and choice, severe traffic congestions and insufficient fund to renew and repair vehicles. Generally, the comfort and quality of the city bus is poor, and many of the vehicles are dilapidated and dirty. Surveys were carried out in the city of Yogyakarta, by counting city bus vehicles and occupancies, interviewing the bus passengers, drivers and institutional staffs, who involve in public transport management. This paper will then analyze the possible plan to develop the public transport system to become more attractive and to improve the public transport management. The short, medium and long term plans are analyzed, to find the best solutions. Some constraints such as social impacts and financial impact are also taken into accounts.

Preparing Entrepreneurial Women: A Challenge for Indian Education System

Education, as the most important resource in any country, has multiplying effects on all facets of development in a society. The new social realities, particularly the interplay between democratization of education; unprecedented developments in IT sector; emergence of knowledge society, liberalization of economy and globalization have greatly influenced the educational process of all nations. This turbulence entails upon education to undergo dramatic changes to keep up with the new expectations. Growth of entrepreneurship among Indian women is highly important for empowering them and this is highly essential for socio-economic development of a society. Unfortunately in India there is poor acceptance of entrepreneurship among women as unfounded myths and fears restrain them to be enterprising. To remove these inhibitions, education system needs to be re-engineered to make entrepreneurship more acceptable. This paper empirically analyses the results of a survey done on around 500 female graduates in North India to measure and evaluate various entrepreneurial traits present in them. A formative model has been devised in this context, which should improve the teaching-learning process in our education system, which can lead to sustainable growth of women entrepreneurship in India.

On Leak Localization in the Main Branched and Simple Inclined Gas Pipelines

In this paper two mathematical models for definition of gas accidental escape localization in the gas pipelines are suggested. The first model was created for leak localization in the horizontal branched pipeline and second one for leak detection in inclined section of the main gas pipeline. The algorithm of leak localization in the branched pipeline did not demand on knowledge of corresponding initial hydraulic parameters at entrance and ending points of each sections of pipeline. For detection of the damaged section and then leak localization in this section special functions and equations have been constructed. Some results of calculations for compound pipelines having two, four and five sections are presented. Also a method and formula for the leak localization in the simple inclined section of the main gas pipeline are suggested. Some results of numerical calculations defining localization of gas escape for the inclined pipeline are presented.

Goodwill in the Current Greek Accounting Environment

The growing interest in the issue of intangible assets not only in the scientific community but also in some professional bodies internationally can be explained by several points of view. From the business perspective, enterprises are increasingly motivated by external and internal forces to measure and proactively manage their intangibles. With respect to the issue of intangibles, goodwill has been debated in many countries throughout the world. Despite the numerous efforts and the existence of international accounting standards there is not yet a common accepted accounting treatment for goodwill. This study attempts on the one hand to impress the accounting treatment of goodwill internationally, on the other hand analyses the major subjects in relation to the accounting treatment of goodwill in Greece, since 2005, year where the international accounting standards have been in use for the Greek listed companies. The results indicate that the accounting treatment for the goodwill in Greece, despite the effort for accounting harmonization in Europe from 2005, sustains many differences especially for the no listed companies.

Critical Issues Affecting the Engagement by Staff in Professional Development for E-Learning: Findings from a Research Project within the Context of a National Tertiary Education Sector

This paper focuses on issues of engagement by staff in professional development related to the delivery of e-learning. The paper reports on findings drawn from a New Zealand research project which is producing a sector-wide framework for professional development in tertiary e-learning. The research findings indicate that staff engaged in e-learning in tertiary institutions is not making the most effective use of the professional development opportunities available to them; rather they seem to gain their knowledge and support from a variety of informal means. This is despite an emphasis on the provision of professional development opportunities by both Government Policies and Institutions themselves. The conclusion drawn from the findings is that institutional approaches to professional development for e-learning do not yet fully reflect the demands and constraints that working in a digital context impose.

Mixture Design Experiment on Flow Behaviour of O/W Emulsions as Affected by Polysaccharide Interactions

Interaction effects of xanthan gum (XG), carboxymethyl cellulose (CMC), and locust bean gum (LBG) on the flow properties of oil-in-water emulsions were investigated by a mixture design experiment. Blends of XG, CMC and LBG were prepared according to an augmented simplex-centroid mixture design (10 points) and used at 0.5% (wt/wt) in the emulsion formulations. An appropriate mathematical model was fitted to express each response as a function of the proportions of the blend components that are able to empirically predict the response to any blend of combination of the components. The synergistic interaction effect of the ternary XG:CMC:LBG blends at approximately 33-67% XG levels was shown to be much stronger than that of the binary XG:LBG blend at 50% XG level (p < 0.05). Nevertheless, an antagonistic interaction effect became significant as CMC level in blends was more than 33% (p < 0.05). Yield stress and apparent viscosity (at 10 s-1) responses were successfully fitted with a special quartic model while flow behaviour index and consistency coefficient were fitted with a full quartic model (R2 adjusted ≥ 0.90). This study found that a mixture design approach could serve as a valuable tool in better elucidating and predicting the interaction effects beyond the conventional twocomponent blends.