Estimation Method for the Construction of Hydrogen Society with Various Biomass Resources in Japan-Project of Cost Reductions in Biomass Transport and Feasibility for Hydrogen Station with Biomass-

It was determined that woody biomass and livestock excreta can be utilized as hydrogen resources and hydrogen produced from such sources can be used to fill fuel cell vehicles (FCVs) at hydrogen stations. It was shown that the biomass transport costs for hydrogen production may be reduced the costs for co-generation. In the Tokyo Metropolitan Area, there are only a few sites capable of producing hydrogen from woody biomass in amounts greater than 200 m3/h-the scale required for a hydrogen station to be operationally practical. However, in the case of livestock excreta, it was shown that 15% of the municipalities in this area are capable of securing sufficient biomass to be operationally practical for hydrogen production. The differences in feasibility of practical operation depend on the type of biomass.





References:
[1] Japan Automobile Research Institute (JARI), March 2006. JHFC
Combined Efficiency Study Report
[2] S. Yokoyama, 2001. The Cutting Edge of Biomass Energy. Tokyo:
Morikita Publishing Co., Ltd.
[3] New Energy and Industrial Technology Development Organization
(NEDO), March 1999. 1998 Study Report: Studies of Energy Conversion
Technologies Using Biomass Resources as Raw Material
[4] Japan Institute of Energy (JIE), August 2001. 2001 Studies on High-
Efficiency Biomass Energy Conversion Technology
[5] NEDO, In Brochure of Synopsis of Empirical Testing of Biomass and
Other Unutilized Energy Sources
[6] T. Minowa, New Technologies for the Production of Hydrogen from
Wood at the Advanced Industrial Science and Technology (AIST)
website:
http://www.aist.go.jp/aist_j/press_release/pr2004/pr20041014/pr200410
14.html retrieved April 2007.
[7] "Characteristics of High-Temperature Dry Methane Fermentation
(ÔÇÿCompo-System-)," at the Takuma K.K. website:
http://www.takuma.co.jp/product/waste/general/08biogas01.html
retrieved March 2007
[8] Ebara Corporation, Nishihara Environment Technology Inc., Kajima
Corporation, AIST and Japan Bioindustry Association (JBA), February
2007. Research and Development in Two-Step Fermentation
Technologies, with a Focus on High-Efficiency Hydrogen and Methane
Fermentation of Organic Waste Matter. submission to the 2005 NEDO
Reporting Committee on Development Results in High-Efficiency
Biomass Energy Conversion Technology.
[9] Mitsubishi Research Institute (MRI), December 2002. 2002 Report on
Basic Research in Promoting the Introduction of New Forms of Energy
(Research on Biomass Energy Development and Utilization Strategy)
[10] GIS database of biomass availability and usability volumes, at NEDO
website
Web: http://www.nedo.go.jp/
[11] M. Iuchi, Central Research Institute of Electric Power Industry
(CRIEPI). March 2004. Development of Biomass Energy Utilization
Planning Support Systems: Availability Databases and Collection Costs
Evaluation Model.
[12] Value Management Institute (VMI) and Tokyo Gas, March 2007. Basic
Research in Scenario Studies for Hydrogen Infrastructure Development
in the Kanto Area
[13] JARI and Engineering Advancement Association of Japan (ENAA),
October 2006. Report on Empirical and Other Studies of Proton-
Exchange Membrane Fuel Cell Systems (1st-Term JHFC Project)