Development of Autonomous Cable Inspection Robot for Nuclear Power Plant

The cables in a nuclear power plant are designed to be used for about 40 years in safe operation environment. However, the heat and radiation in the nuclear power plant causes the rapid performance deterioration of cables in nuclear vessels and heat exchangers, which requires cable lifetime estimation. The most accurate method of estimating the cable lifetime is to evaluate the cables in a laboratory. However, removing cables while the plant is operating is not allowed because of its safety and cost. In this paper, a robot system to estimate the cable lifetime in nuclear power plants is developed and tested. The developed robot system can calculate a modulus value to estimate the cable lifetime even when the nuclear power plant is in operation.

Mining Network Data for Intrusion Detection through Naïve Bayesian with Clustering

Network security attacks are the violation of information security policy that received much attention to the computational intelligence society in the last decades. Data mining has become a very useful technique for detecting network intrusions by extracting useful knowledge from large number of network data or logs. Naïve Bayesian classifier is one of the most popular data mining algorithm for classification, which provides an optimal way to predict the class of an unknown example. It has been tested that one set of probability derived from data is not good enough to have good classification rate. In this paper, we proposed a new learning algorithm for mining network logs to detect network intrusions through naïve Bayesian classifier, which first clusters the network logs into several groups based on similarity of logs, and then calculates the prior and conditional probabilities for each group of logs. For classifying a new log, the algorithm checks in which cluster the log belongs and then use that cluster-s probability set to classify the new log. We tested the performance of our proposed algorithm by employing KDD99 benchmark network intrusion detection dataset, and the experimental results proved that it improves detection rates as well as reduces false positives for different types of network intrusions.

Numerical Simulation of Interfacial Flow with Volume-Of-Fluid Method

In this article, various models of surface tension force (CSF, CSS and PCIL) for interfacial flows have been applied to dynamic case and the results were compared. We studied the Kelvin- Helmholtz instabilities, which are produced by shear at the interface between two fluids with different physical properties. The velocity inlet is defined as a sinusoidal perturbation. When gravity and surface tension are taking into account, we observe the development of the Instability for a critic value of the difference of velocity of the both fluids. The VOF Model enables to simulate Kelvin-Helmholtz Instability as dynamic case.

A Study on Flammability of Bio Oil Combustible Vapour Mixtures

Study of fire and explosion is very important mainly in oil and gas industries due to several accidents which have been reported in the past and present. In this work, we have investigated the flammability of bio oil vapour mixtures. This mixture may contribute to fire during the storage and transportation process. Bio oil sample derived from Palm Kernell shell was analysed using Gas Chromatography Mass Spectrometry (GC-MS) to examine the composition of the sample. Mole fractions of 12 selected components in the liquid phase were obtained from the GC-FID data and used to calculate mole fractions of components in the gas phase via modified Raoult-s law. Lower Flammability Limits (LFLs) and Upper Flammability Limits (UFLs) for individual components were obtained from published literature. However, stoichiometric concentration method was used to calculate the flammability limits of some components which their flammability limit values are not available in the literature. The LFL and UFL values for the mixture were calculated using the Le Chatelier equation. The LFLmix and UFLmix values were used to construct a flammability diagram and subsequently used to determine the flammability of the mixture. The findings of this study can be used to propose suitable inherently safer method to prevent the flammable mixture from occurring and to minimizing the loss of properties, business, and life due to fire accidents in bio oil productions.

Semisolid Structure and Parameters for A360 Aluminum Alloy Prepared by Mechanical Stirring

Semisolid metal processing uses solid–liquid slurries containing fine and globular solid particles uniformly distributed in a liquid matrix, which can be handled as a solid and flow like a liquid. In the recent years, many methods have been introduced for the production of semisolid slurries since it is scientifically sound and industrially viable with such preferred microstructures called thixotropic microstructures as feedstock materials. One such process that needs very low equipment investment and running costs is the cooling slope. In this research by using a mechanical stirrer slurry maker constructed by the authors, the effects of mechanical stirring parameters such as: stirring time, stirring temperature and stirring Speed on micro-structure and mechanical properties of A360 aluminum alloy in semi-solid forming, are investigated. It is determined that mold temperature and holding time of part in temperature of 580ºC have a great effect on micro-structure and mechanical properties(stirring temperature of 585ºC, stirring time of 20 minutes and stirring speed of 425 RPM). By optimizing the forming parameters, dendrite microstructure changes to globular and mechanical properties improves. This is because of breaking and globularzing dendrites of primary α-AL.

Classifying Biomedical Text Abstracts based on Hierarchical 'Concept' Structure

Classifying biomedical literature is a difficult and challenging task, especially when a large number of biomedical articles should be organized into a hierarchical structure. In this paper, we present an approach for classifying a collection of biomedical text abstracts downloaded from Medline database with the help of ontology alignment. To accomplish our goal, we construct two types of hierarchies, the OHSUMED disease hierarchy and the Medline abstract disease hierarchies from the OHSUMED dataset and the Medline abstracts, respectively. Then, we enrich the OHSUMED disease hierarchy before adapting it to ontology alignment process for finding probable concepts or categories. Subsequently, we compute the cosine similarity between the vector in probable concepts (in the “enriched" OHSUMED disease hierarchy) and the vector in Medline abstract disease hierarchies. Finally, we assign category to the new Medline abstracts based on the similarity score. The results obtained from the experiments show the performance of our proposed approach for hierarchical classification is slightly better than the performance of the multi-class flat classification.

An Amalgam Approach for DICOM Image Classification and Recognition

This paper describes about the process of recognition and classification of brain images such as normal and abnormal based on PSO-SVM. Image Classification is becoming more important for medical diagnosis process. In medical area especially for diagnosis the abnormality of the patient is classified, which plays a great role for the doctors to diagnosis the patient according to the severeness of the diseases. In case of DICOM images it is very tough for optimal recognition and early detection of diseases. Our work focuses on recognition and classification of DICOM image based on collective approach of digital image processing. For optimal recognition and classification Particle Swarm Optimization (PSO), Genetic Algorithm (GA) and Support Vector Machine (SVM) are used. The collective approach by using PSO-SVM gives high approximation capability and much faster convergence.

Ignition Analysis in Supersonic Turbulent Mixing Layer

Numerical study of two dimensional supersonic hydrogen-air mixing layer is performed to investigate the effect of turbulence and chemical additive on ignition distance. Chemical reaction is treated using detail kinetics. Advection upstream splitting method is used to calculate the fluxes and one equation turbulence model is chosen here to simulate the considered problem. Hydrogen peroxide is used as an additive and the results show that inflow turbulence and chemical additive may drastically decrease the ignition delay in supersonic combustion.

Political Preconditions for National Values of the Kazakhstan Nation

Article is devoted to the problem of Kazakhstan people national values in the conditions of the Republic of Kazakhstan independence. Formation of ethnos national values is viewed as the mandatory constituent of this process in contemporary conditions. The article shows the dynamics of forming socialspiritual basis of Kazakhstan people-s national values. It depicts peculiarities of interethnic relations in poly-ethnic and multiconfessional Kazakhstan. The study reviews in every detail various directions of the state social policy development in the sphere of national values. It is aimed to consolidation of the society to achieve the shared objective, i.e. building democratic and civilized state. The author discloses peculiarities of ethnos national values development using specific sources. It is underlined that renewal and modernization of Kazakhstan society represents new stage in the national value development, and its typical feature is integration process based on peoples- friendship, cultural principles of interethnic communication.

Computation of Probability Coefficients using Binary Decision Diagram and their Application in Test Vector Generation

This paper deals with efficient computation of probability coefficients which offers computational simplicity as compared to spectral coefficients. It eliminates the need of inner product evaluations in determination of signature of a combinational circuit realizing given Boolean function. The method for computation of probability coefficients using transform matrix, fast transform method and using BDD is given. Theoretical relations for achievable computational advantage in terms of required additions in computing all 2n probability coefficients of n variable function have been developed. It is shown that for n ≥ 5, only 50% additions are needed to compute all probability coefficients as compared to spectral coefficients. The fault detection techniques based on spectral signature can be used with probability signature also to offer computational advantage.

Changes in Selected Fuel Properties of Sewage Sludge as a Result of its Storage

The article presents test results on the changes occurring in sewage sludge during the process of its storage. Tests were conducted on mechanically dehydrated sewage sludge derived from large municipal sewage treatment plants equipped with biological sewage treatment systems. In testing presented in the paper the focus was on the basic fuel properties of sewage sludge: moisture content, heat of combustion, carbon share. In the first part of the article the overview of the issues concerning the sewage sludge management is presented and the genesis of tests is explained. Further in the paper, selected results of conducted tests are discussed. Changes in tested parameters were determined in the period of a 10- month sewage storage.

Thermodynamic Modeling of the High Temperature Shift Converter Reactor Using Minimization of Gibbs Free Energy

The equilibrium chemical reactions taken place in a converter reactor of the Khorasan Petrochemical Ammonia plant was studied using the minimization of Gibbs free energy method. In the minimization of the Gibbs free energy function the Davidon– Fletcher–Powell (DFP) optimization procedure using the penalty terms in the well-defined objective function was used. It should be noted that in the DFP procedure along with the corresponding penalty terms the Hessian matrices for the composition of constituents in the Converter reactor can be excluded. This, in fact, can be considered as the main advantage of the DFP optimization procedure. Also the effect of temperature and pressure on the equilibrium composition of the constituents was investigated. The results obtained in this work were compared with the data collected from the converter reactor of the Khorasan Petrochemical Ammonia plant. It was concluded that the results obtained from the method used in this work are in good agreement with the industrial data. Notably, the algorithm developed in this work, in spite of its simplicity, takes the advantage of short computation and convergence time.

An Efficient Data Mining Approach on Compressed Transactions

In an era of knowledge explosion, the growth of data increases rapidly day by day. Since data storage is a limited resource, how to reduce the data space in the process becomes a challenge issue. Data compression provides a good solution which can lower the required space. Data mining has many useful applications in recent years because it can help users discover interesting knowledge in large databases. However, existing compression algorithms are not appropriate for data mining. In [1, 2], two different approaches were proposed to compress databases and then perform the data mining process. However, they all lack the ability to decompress the data to their original state and improve the data mining performance. In this research a new approach called Mining Merged Transactions with the Quantification Table (M2TQT) was proposed to solve these problems. M2TQT uses the relationship of transactions to merge related transactions and builds a quantification table to prune the candidate itemsets which are impossible to become frequent in order to improve the performance of mining association rules. The experiments show that M2TQT performs better than existing approaches.

EMOES: Eye Motion and Ocular Expression Simulator

We introduce, a new interactive 3D simulation system of ocular motion and expressions suitable for: (1) character animation applications to game design, film production, HCI (Human Computer Interface), conversational animated agents, and virtual reality; (2) medical applications (ophthalmic neurological and muscular pathologies: research and education); and (3) real time simulation of unconscious cognitive and emotional responses (for use, e.g., in psychological research). The system is comprised of: (1) a physiologically accurate parameterized 3D model of the eyes, eyelids, and eyebrow regions; and (2) a prototype device for realtime control of eye motions and expressions, including unconsciously produced expressions, for application as in (1), (2), and (3) above. The 3D eye simulation system, created using state-of-the-art computer animation technology and 'optimized' for use with an interactive and web deliverable platform, is, to our knowledge, the most advanced/realistic available so far for applications to character animation and medical pedagogy.

Video Classification by Partitioned Frequency Spectra of Repeating Movements

In this paper we present a system for classifying videos by frequency spectra. Many videos contain activities with repeating movements. Sports videos, home improvement videos, or videos showing mechanical motion are some example areas. Motion of these areas usually repeats with a certain main frequency and several side frequencies. Transforming repeating motion to its frequency domain via FFT reveals these frequencies. Average amplitudes of frequency intervals can be seen as features of cyclic motion. Hence determining these features can help to classify videos with repeating movements. In this paper we explain how to compute frequency spectra for video clips and how to use them for classifying. Our approach utilizes series of image moments as a function. This function again is transformed into its frequency domain.

Double Reduction of Ada-ECATNet Representation using Rewriting Logic

One major difficulty that faces developers of concurrent and distributed software is analysis for concurrency based faults like deadlocks. Petri nets are used extensively in the verification of correctness of concurrent programs. ECATNets [2] are a category of algebraic Petri nets based on a sound combination of algebraic abstract types and high-level Petri nets. ECATNets have 'sound' and 'complete' semantics because of their integration in rewriting logic [12] and its programming language Maude [13]. Rewriting logic is considered as one of very powerful logics in terms of description, verification and programming of concurrent systems. We proposed in [4] a method for translating Ada-95 tasking programs to ECATNets formalism (Ada-ECATNet). In this paper, we show that ECATNets formalism provides a more compact translation for Ada programs compared to the other approaches based on simple Petri nets or Colored Petri nets (CPNs). Such translation doesn-t reduce only the size of program, but reduces also the number of program states. We show also, how this compact Ada-ECATNet may be reduced again by applying reduction rules on it. This double reduction of Ada-ECATNet permits a considerable minimization of the memory space and run time of corresponding Maude program.

Effect of CW Laser Annealing on Silicon Surface for Application of Power Device

As application of re-activation of backside on power device Insulated Gate Bipolar Transistor (IGBT), laser annealing was employed to irradiate amorphous silicon substrate, and resistivities were measured using four point probe measurement. For annealing the amorphous silicon two lasers were used at wavelength of visible green (532 nm) together with Infrared (793 nm). While the green laser efficiently increased temperature at top surface the Infrared laser reached more deep inside and was effective for melting the top surface. A finite element method was employed to evaluate time dependent thermal distribution in silicon substrate.

Effective Digital Music Retrieval System through Content-based Features

In this paper, we propose effective system for digital music retrieval. We divided proposed system into Client and Server. Client part consists of pre-processing and Content-based feature extraction stages. In pre-processing stage, we minimized Time code Gap that is occurred among same music contents. As content-based feature, first-order differentiated MFCC were used. These presented approximately envelop of music feature sequences. Server part included Music Server and Music Matching stage. Extracted features from 1,000 digital music files were stored in Music Server. In Music Matching stage, we found retrieval result through similarity measure by DTW. In experiment, we used 450 queries. These were made by mixing different compression standards and sound qualities from 50 digital music files. Retrieval accurate indicated 97% and retrieval time was average 15ms in every single query. Out experiment proved that proposed system is effective in retrieve digital music and robust at various user environments of web.

A Study on Remote On-Line Diagnostic System for Vehicles by Integrating the Technology of OBD, GPS, and 3G

This paper presents a remote on-line diagnostic system for vehicles via the use of On-Board Diagnostic (OBD), GPS, and 3G techniques. The main parts of the proposed system are on-board computer, vehicle monitor server, and vehicle status browser. First, the on-board computer can obtain the location of deriver and vehicle status from GPS receiver and OBD interface, respectively. Then on-board computer will connect with the vehicle monitor server through 3G network to transmit the real time vehicle system status. Finally, vehicle status browser could show the remote vehicle status including vehicle speed, engine rpm, battery voltage, engine coolant temperature, and diagnostic trouble codes. According to the experimental results, the proposed system can help fleet managers and car knockers to understand the remote vehicle status. Therefore this system can decrease the time of fleet management and vehicle repair due to the fleet managers and car knockers who find the diagnostic trouble messages in time.

When Construction Material Traders Goes Electronic: Analysis of SMEs in Malaysian Construction Industry

This paper analyzed the perception of e-commerce application services by construction material traders in Malaysia. Five attributes were tested: usability, reputation, trust, privacy and familiarity. Study methodology consists of survey questionnaire and statistical analysis that includes reliability analysis, factor analysis, ANOVA and regression analysis. The respondents were construction material traders, including hardware stores in Klang Valley, Kuala Lumpur. Findings support that usability and familiarity with e-commerce services in Malaysia have insignificant influence on the acceptance of e-commerce application. However, reputation, trust and privacy attributes have significant influence on the choice of e-commerce acceptance by construction material traders. E-commerce applications studied included customer database, e-selling, emarketing, e-payment, e-buying and online advertising. Assumptions are made that traders have basic knowledge and exposure to ICT services. i.e. internet service and computers. Study concludes that reputation, privacy and trust are the three website attributes that influence the acceptance of e-commerce by construction material traders.