Abstract: The microstructure and texture evolution of cryo rolled and annealed ductile TaHfNbZrTi refractory high entropy alloy was investigated. To obtain that, the alloy is severely cryo rolled and subsequently annealed for the recrystallization process. The cryo rolled – 90% shows the presence of very fine grains and microstructural heterogeneity. The cryo rolled samples are annealed at a temperature ranging from 800°C to 1400°C, the partial recrystallization is observed at 800°C annealed condition, and at higher annealing temperatures the complete recrystallization process is noticed. The development of ND fiber texture is observed after the annealing.
Abstract: The refractory high entropy alloys are potential materials for high-temperature applications because of their ability to retain high strength up to 1600°C. However, their practical applications were limited due to poor elongation at room temperature. Therefore, decreasing the average valence electron concentrations (VEC) is an effective design strategy to improve the intrinsic ductility of refractory high entropy alloys. In this work, the high-entropy alloy TaNbHfZrTi was processed at room temperature by each step reverse rolling up to a 90% reduction in thickness. Subsequently, the reverse rolled 90% samples were utilized for annealing treatment at 800°C and 1000°C for 1 h to understand phase stability, microstructure, texture, and mechanical properties. The reverse rolled 90% condition contains body-centered cubic (BCC) single-phase; upon annealing at 800 °C, the formation of secondary phase BCC-2 prevailed. The partial recrystallization and complete recrystallization microstructures were developed for annealed at 800°C and 1000°C, respectively. The reverse rolled condition and 1000°C annealed temperature exhibit extraordinary room temperature tensile properties with high ultimate tensile strength (UTS) without compromising loss of ductility called “strength-ductility” trade-off. The reverse-rolled 90% and annealing treatment carried out at temperature about 1000°C for 1 h consist of UTS 1430 MPa and 1556 MPa with an appreciable amount of 21% and 20% elongation, respectively. The development of hierarchical microstructure prevailed for the annealed 1000°C which led to the simultaneous increase in tensile strength and elongation.
Abstract: The refractory alloys are crucial for high-temperature applications to improve performance and reduce cost. They are used in several applications such as aerospace, outer space, military and defense, nuclear powerplants, automobiles, and industry. The conventional refractory alloys show greater stability at high temperatures and in contrast they have operational limitations due to their low melting temperatures. However, there is a huge requirement to improve the refractory alloys’ operational temperatures and replace the conventional alloys. The newly emerging refractory high entropy alloys (RHEAs) could be alternative materials for conventional refractory alloys and fulfill the demands and requirements of various practical applications in the future. The RHEA TaHfNbZrTi was prepared through an arc melting process. The annealing behavior of severely deformed equiatomic RHEATaHfNbZrTi has been investigated. To obtain deformed condition, the alloy is cold-rolled to 90% thickness reduction and then subjected to an annealing process to observe recrystallization and microstructural evolution in the range of 800 °C to 1400 °C temperatures. The cold-rolled – 90% condition shows the presence of microstructural heterogeneity. The annealing microstructure of 800 °C temperature reveals that partial recrystallization and further annealing treatment carried out annealing treatment in the range of 850 °C to 1400 °C temperatures exhibits completely recrystallized microstructures, followed by coarsening with a degree of annealing temperature. The deformed and annealed conditions featured the development of body-centered cubic (BCC) fiber textures. The experimental investigation of heavy deformation and followed by high-temperature annealing up to 1400 °C temperature will contribute to the understanding of microstructure and texture evolution of emerging RHEAs.
Abstract: The microstructure, texture, phase stability, and tensile properties of annealed Ta0.5Nb0.5Hf0.5ZrTi1.5 alloy have been investigated in the present research. The alloy was severely hybrid-rolled up to 93.5% thickness reduction, subsequently rolled samples subjected to an annealing treatment at 800 °C and 1000 °C temperatures for 1 h. Consequently, the rolled condition and both annealed temperatures have a body-centered cubic (BCC) structure. Furthermore, quantitative texture measurements (orientation distribution function (ODF) analysis) and microstructural examinations (analytical electron backscatter diffraction (EBSD) maps) permitted to establish a good relationship between annealing texture and microstructure and universal testing machine (UTM) utilized for obtaining the mechanical properties. Impressive room temperature tensile properties combination with the tensile strength (1380 MPa) and (24.7%) elongation is achieved for the 800 °C heat-treated condition. The evolution of the coarse microstructure featured in the case of 1000 °C annealed temperature ascribed to the influence of high thermal energy.
Abstract: The strength, hardness, and toughness (ductility) are in strong conflict for the metallic materials. The only possibility how to make their simultaneous improvement is to provide the microstructural refinement, by cold deformation, and subsequent recrystallization. However, application of this kind of treatment is impossible for high-carbon high-alloyed ledeburitic tool steels. Alternatively, it has been demonstrated over the last few years that sub-zero treatment induces some microstructural changes in these materials, which might favourably influence their complex of mechanical properties. Commercially available PM ledeburitic steel Vanadis 6 has been used for the current investigations. The paper demonstrates that sub-zero treatment induces clear refinement of the martensite, reduces the amount of retained austenite, enhances the population density of fine carbides, and makes alterations in microstructural development that take place during tempering. As a consequence, the steel manifests improved wear resistance at higher toughness and fracture toughness. Based on the obtained results, the key question “can the wear performance be improved by sub-zero treatment simultaneously with toughness” can be answered by “definitely yes”.
Abstract: The present work is dealing with 2% Si-steel alloy. The alloy contains 0.05% C as well as 0.85% Al. The alloy under investigation would be used for electrical transformation purposes. A heating (expansion) - cooling (contraction) dilation investigation was executed to detect the a, a+g, and g transformation temperatures at the inflection points of the dilation curve. On heating, primary a was detected at a temperature range between room temperature and 687 oC. The domain of a+g was detected in the range between 687 oC and 746 oC. g phase exists in the closed g region at the range between 746 oC and 1043 oC. The domain of a phase appears again at a temperature range between 1043 and 1105 oC, and followed by secondary a at temperature higher than 1105 oC. A physical simulation of thermo-mechanical processing on the as-cast alloy was carried out. The simulation process took into consideration the hot flat rolling pilot plant parameters. The process was executed on the thermo-mechanical simulator (Gleeble 3500). The process was designed to include seven consecutive passes. The 1st pass represents the roughing stage, while the remaining six passes represent finish rolling stage. The whole process was executed at the temperature range from 1100 oC to 900 oC. The amount of strain starts with 23.5% at the roughing pass and decreases continuously to reach 7.5 % at the last finishing pass. The flow curve of the alloy can be abstracted from the stress-strain curves representing simulated passes. It shows alloy hardening from a pass to the other up to pass no. 6, as a result of decreasing the deformation temperature and increasing of cumulative strain. After pass no. 6, the deformation process enhances the dynamic recrystallization phenomena to appear, where the z-parameter would be high.
Abstract: The evolution of volume porosity previously obtained by using the existing low temperature high burn-up gaseous swelling model with progressive recrystallization for UO2 fuel is utilized to study the degradation of irradiated UO2 thermal conductivity calculated by the FRAPCON model of thermal conductivity. A porosity correction factor is developed based on the assumption that the fuel morphology is a three-phase type, consisting of the as-fabricated pores and pores due to intergranular bubbles whitin UO2 matrix and solid fission products. The predicted thermal conductivity demonstrates an additional degradation of 27% due to porosity formation at burn-up levels around 120 MWd/kgU which would cause an increase in the fuel temperature accordingly. Results of the calculations are compared with available data.
Abstract: The steel contains 0.3% C and 0.004% B, beside Mn, Cr, Mo, and Ni. The alloy was processed by using 20-ton capacity electric arc furnace (EAF), and then refined by ladle furnace (LF). Liquid steel was cast as rectangular ingots. Dilatation test showed the critical transformation temperatures Ac1, Ac3, Ms and Mf as 716, 835, 356, and 218 °C. The ingots were austenitized and soaked and then rough rolled to thin slabs with 80 mm thickness. The thin slabs were then reheated and soaked for finish rolling to 6.0 mm thickness plates. During the rough rolling, the roll force increases as a result of rolling at temperatures less than recrystallization temperature. However, during finish rolling, the steel reflects initially continuous static recrystallization after which it shows strain hardening due to fall of temperature. It was concluded that, the steel plates were successfully heat treated by quenching-tempering at 250 ºC for 20 min.
Abstract: Microstructure and mechanical properties of AZ91D
Mg alloys for nonflammable use, containing Ca and Y, were
investigated in this study. Solid solution treatment of AZ91D Mg alloy
with Ca and Y was successfully conducted at 420oC and
supersaturated microstructure with almost all beta phases resolved into
matrix was obtained. After solid solution treatment, the alloy was
annealed at temperatures of 180 and 200oC for time intervals from 1
min to 48 hrs and hardness of each condition was measured by
micro-Vickers method. Peak aging conditions were deduced from the
results as at the temperature of 200oC for 10 hrs. Hot rolling was also
carried out at 400oC by the reduction ratio of 0.6 through 5 passes
followed by recrystallization treatment. Tensile and compressive
properties were measured at room temperature on the specimens of
each process, i.e. as-cast, solution treatment, hot rolling, and
recrystallization.
Abstract: This study is about the structural transformations of
aluminium examining with the Dynamic Mechanical Thermal
Analyzer (DMTA). It is a faster and simpler measuring method to
make consequence about the metal’s structural transformations. The
device measures the changing of the mechanical characteristics
depending on the heating rate, and concludes certain transformations.
This measuring method fast and shows clean-cut results comparing
the conventional ways.
Applying polymer measuring devices for metal investigations is
not widespread method. One of the adaptable ways is shown in this
study. The article compares the results of the small specimen test and
the DMTA method, considering the temperature and the forming
dependence of recrystallization temperature.
Abstract: This study compared the mechanical and microstructural properties produced during friction stir welding (FSW) of S275 structural steel in air and underwater. Post weld tests assessed the tensile strength, micro-hardness, distortion, Charpy impact toughness and fatigue performance in each case. The study showed that there was no significant difference in the strength, hardness or fatigue life of the air and underwater specimens. However, Charpy impact toughness was shown to decrease for the underwater specimens and was attributed to a lower degree of recrystallization caused by the higher rate of heat loss experienced when welding underwater. Reduced angular and longitudinal distortion was observed in the underwater welded plate compared to the plate welded in air.
Abstract: The Salman Farsi dam project is constructed on the Ghareh Agahaj River about 140km south of Shiraz city in the Zagros Mountains of southwestern Iran. This tectonic province of south-western Iran is characterized by a simple folded sedimentary sequence. The dam foundation rocks compose of the Asmari Formation of Oligo-miocene and generally comprise of a variety of karstified carbonate rocks varying from strong to weak rocks. Most of the rocks exposed at the dam site show a primary porosity due to incomplete diagenetic recrystallization and compaction. In addition to these primary dispositions to weathering, layering conditions (frequency and orientation of bedding) and the subvertical tectonic discontinuities channeled preferably the infiltrating by deep-sited hydrothermal solutions. Consequently the porosity results to be enlarged by dissolution and the rocks are expected to be karstified and to develop cavities in correspondence of bedding, major joint planes and fault zones. This kind of karsts is named hypogenic karsts which associated to the ascendant warm solutions. Field observations indicate strong karstification and vuggy intercalations especially in the middle part of the Asmari succession. The biggest karst in the dam axis which identified by speleological investigations is Golshany Cave with volume of about 150,000 m3. The tendency of the Asmari limestone for strong dissolution can alert about the seepage from the reservoir and area of the dam locality.
Abstract: Electron back-scattered diffraction was used to follow the evolution of microstructure from the base metal to the stir zone (SZ) in a duplex stainless steel subjected to friction stir welding. In the stir zone (SZ), a continuous dynamic recrystallization (CDRX) was evidenced for ferrite, while it was suggested that a static recrystallization together with CDRX may occur for austenite. It was found that ferrite and austenite grains in the SZ take a typical shear texture of bcc and fcc materials respectively.
Abstract: Single crystals of Magnesium alloys such as pure Mg,
Mg-1Zn-0.5Y, Mg-0.1Y, and Mg-0.1Ce alloys were successfully
fabricated in this study by employing the modified Bridgman method.
To determine the exact orientation of crystals, pole figure
measurement using X-ray diffraction were carried out on each single
crystal. Hardness and compression tests were conducted followed by
subsequent recrysatllization annealing. Recrystallization kinetics of
Mg alloy single crystals has been investigated. Fabricated single
crystals were cut into rectangular shaped specimen and solution
treated at 400oC for 24 hrs, and then deformed in compression mode
by 30% reduction. Annealing treatment for recrystallization has been
conducted on these cold-rolled plates at temperatures of 300oC for
various times from 1 to 20 mins. The microstructure observation and
hardness measurement conducted on the recrystallized specimens
revealed that static recrystallization of ternary alloy single crystal was
very slow, while recrystallization behavior of binary alloy single
crystals appeared to be very fast.
Abstract: In the Fe-3%Si sheets, grade Hi-B, with AlN and MnS
as inhibitors, the Goss grains which abnormally grow do not have a
size greater than the average size of the primary matrix. In this
heterogeneous microstructure, the size factor is not a required
condition for the secondary recrystallization. The onset of the small
Goss grain abnormal growth appears to be related to a particular
behavior of their grain boundaries, to the local texture and to the
distribution of the inhibitors. The presence and the evolution of
oriented clusters ensure to the small Goss grains a favorable
neighborhood to grow. The modified Monte-Carlo approach, which
is applied, considers the local environment of each grain. The grain
growth is dependent of its real spatial position; the matrix
heterogeneity is then taken into account. The grain growth conditions
are considered in the global matrix and in different matrixes
corresponding to A component clusters. The grain growth behaviour
is considered with introduction of energy only, energy and mobility,
energy and mobility and precipitates.
Abstract: As application of re-activation of backside on power
device Insulated Gate Bipolar Transistor (IGBT), laser annealing was
employed to irradiate amorphous silicon substrate, and resistivities
were measured using four point probe measurement. For annealing
the amorphous silicon two lasers were used at wavelength of visible
green (532 nm) together with Infrared (793 nm). While the green
laser efficiently increased temperature at top surface the Infrared
laser reached more deep inside and was effective for melting the
top surface. A finite element method was employed to evaluate time
dependent thermal distribution in silicon substrate.
Abstract: Five crystal modifications of water insoluble
artesunate were generated by recrystallizing it from various solvents
with improved physicochemical properties. These generated crystal
forms were characterized to select the most potent and soluble form.
SEM of all the forms showed changes in external shape leading them
to be different morphologically. DSC thermograms of Form III and
Form V showed broad endotherm peaks at 83.04oC and 76.96oC prior
to melting fusion of drug respectively. Calculated weight loss in TGA
revealed that Form III and Form V are methanol and acetone solvates
respectively. However, few additional peaks were appeared in XRPD
pattern in these two solvate forms. All forms exhibit exothermic
behavior in buffer and two solvates display maximum ease of
molecular release from the lattice. Methanol and acetone solvates
were found to be most soluble forms and exhibited higher
antimalarial efficacy showing higher survival rate (83.3%) after 30
days.
Abstract: Superplastic deformation and high temperature load
relaxation behavior of coarse-grained iron aluminides with the
composition of Fe-28 at.% Al have been investigated. A series of load
relaxation and tensile tests were conducted at temperatures ranging
from 600 to 850oC. The flow curves obtained from load relaxation
tests were found to have a sigmoidal shape and to exhibit stress vs.
strain rate data in a very wide strain rate range from 10-7/s to 10-2/s.
Tensile tests have been conducted at various initial strain rates ranging
from 3×10-5/s to 1×10-2/s. Maximum elongation of ~500 % was
obtained at the initial strain rate of 3×10-5/s and the maximum strain
rate sensitivity was found to be 0.68 at 850oC in binary Fe-28Al alloy.
Microstructure observation through the optical microscopy (OM) and
the electron back-scattered diffraction (EBSD) technique has been
carried out on the deformed specimens and it has revealed the
evidences for grain boundary migration and grain refinement to occur
during superplastic deformation, suggesting the dynamic
recrystallization mechanism. The addition of Cr by the amount of 5
at.% appeared to deteriorate the superplasticity of the binary iron
aluminide. By applying the internal variable theory of structural
superplasticity, the addition of Cr has been revealed to lower the
contribution of the frictional resistance to dislocation glide during high
temperature deformation of the Fe3Al alloy.