The Small Strain Effects to the Shear Strength and Maximum Stiffness of Post-Cyclic Degradation of Hemic Peat Soil

The laboratory tests for measuring the effects of small strain to the shear strength and maximum stiffness development of post-cyclic degradation of hemic peat are reviewed in this paper. A series of laboratory testing has been conducted to fulfil the objective of this research to study the post-cyclic behaviour of peat soil and focuses on the small strain characteristics. For this purpose, a number of strain-controlled static, cyclic and post-cyclic triaxial tests were carried out in undrained condition on hemic peat soil. The shear strength and maximum stiffness of hemic peat are evaluated immediately after post-cyclic monotonic testing. There are two soil samples taken from West Johor and East Malaysia peat soil. Based on these laboratories and field testing data, it was found that the shear strength and maximum stiffness of peat soil decreased in post-cyclic monotonic loading than its initial shear strength and stiffness. In particular, degradation in shear strength and stiffness is more sensitive for peat soil due to fragile and uniform fibre structures. Shear strength of peat soil, τmax = 12.53 kPa (Beaufort peat, BFpt) and 36.61 kPa (Parit Nipah peat, PNpt) decreased than its initial 58.46 kPa and 91.67 kPa. The maximum stiffness, Gmax = 0.23 and 0.25 decreased markedly with post-cyclic, Gmax = 0.04 and 0.09. Simple correlations between the Gmax and the τmax effects due to small strain, ε = 0.1, the Gmax values for post-cyclic are relatively low compared to its initial Gmax. As a consequence, the reported values and patterns of both the West Johor and East Malaysia peat soil are generally the same.

The Light-Effect in Cylindrical Quantum Wire with an Infinite Potential for the Case of Electrons: Optical Phonon Scattering

The light-effect in cylindrical quantum wire with an infinite potential for the case of electrons, optical phonon scattering, is studied based on the quantum kinetic equation. The density of the direct current in a cylindrical quantum wire by a linearly polarized electromagnetic wave, a DC electric field, and an intense laser field is calculated. Analytic expressions for the density of the direct current are studied as a function of the frequency of the laser radiation field, the frequency of the linearly polarized electromagnetic wave, the temperature of system, and the size of quantum wire. The density of the direct current in cylindrical quantum wire with an infinite potential for the case of electrons – optical phonon scattering is nonlinearly dependent on the frequency of the linearly polarized electromagnetic wave. The analytic expressions are numerically evaluated and plotted for a specific quantum wire, GaAs/GaAsAl.

Evaluation of the Effect of Nursing Services Provided in a Correctional Institution on the Physical Health Levels and Health Behaviors of Female Inmates

Female inmates placed in a Correctional Institution (CI) have more physical health problems than other women and their male counterparts. Thus, they require more health care services in the CI and nursing services in particular. CI nurses also have the opportunity to teach behaviors which will protect and improve their health to these women who are difficult to reach in the community. The aim of this study was to evaluate effect of nursing services provided in a CI on the physical health levels and health behaviors of female inmates. The study has a quasi-experimental design. The study was done in Female Closed CI in Ankara, Turkey. The study was conducted on 30 female inmates. Before the implementation of nursing interventions in the initial phase of the study, female inmates were evaluated in terms of physical health problems and health behavior using forms, a physical examination, medical history, health files (file containing medical information related to prisons) and the Omaha System (OS). Findings obtained from evaluations were grouped and symptoms-findings were expressed with OS diagnosis codes. Knowledge, behavior and status scores of prisoners in relation to health problems were determined. After the implementation of the nursing interventions, female inmates were evaluated in terms of physical health problems and health behavior using OS. The research data were collected using the Female Evaluation Form developed by the researcher and the OS. It was found that knowledge, behavior and status scores of prisoners significantly increased after the implementation of nursing interventions (p < 0.05).

Secure E-Pay System Using Steganography and Visual Cryptography

Today’s internet world is highly prone to various online attacks, of which the most harmful attack is phishing. The attackers host the fake websites which are very similar and look alike. We propose an image based authentication using steganography and visual cryptography to prevent phishing. This paper presents a secure steganographic technique for true color (RGB) images and uses Discrete Cosine Transform to compress the images. The proposed method hides the secret data inside the cover image. The use of visual cryptography is to preserve the privacy of an image by decomposing the original image into two shares. Original image can be identified only when both qualified shares are simultaneously available. Individual share does not reveal the identity of the original image. Thus, the existence of the secret message is hard to be detected by the RS steganalysis.

Ultrasound Mechanical Index as a Parameter Affecting of the Ability of Proliferation of Cells

Mechanical index (MI) is used for quantifying acoustic cavitation and the relationship between acoustic pressure and the frequency. In this study, modeling of the MI was applied to provide treatment protocol and to understand the effective physical processes on reproducibility of stem cells. The acoustic pressure and MI equations are modeled and solved to estimate optimal MI for 28, 40, 150 kHz and 1 MHz frequencies. Radial and axial acoustic pressure distribution was extracted. To validate the results of the modeling, the acoustic pressure in the water and near field depth was measured by a piston hydrophone. Results of modeling and experiments show that the model is consistent well to experimental results with 0.91 and 0.90 correlation of coefficient (p

An Internet of Things-Based Weight Monitoring System for Honey

Bees play a vital role in pollination. This paper focuses on the weighing process of honey. Honey is usually stored at the comb in a hive. Bee farmers brush bees away from the comb and then collect honey, and the collected honey is weighed afterward. However, such a process brings strong negative influences on bees and even leads to the death of bees. This paper therefore presents an Internet of Things-based weight monitoring system which uses weight sensors to measure the weight of honey and simplifies the whole weighing procedure. To verify the system, the weight measured by the system is compared to the weight of standard weights used for calibration by employing a linear regression model. The R2 of the regression model is 0.9788, which suggests that the weighing system is highly reliable and is able to be applied to obtain actual weight of honey. In the future, the weight data of honey can be used to find the relationship between honey production and different ecological parameters, such as bees’ foraging behavior and weather conditions. It is expected that the findings can serve as critical information for honey production improvement.

Probabilistic Robustness Assessment of Structures under Sudden Column-Loss Scenario

This paper presents a probabilistic incremental dynamic analysis (IDA) of a full reinforced concrete building subjected to column loss scenario for the assessment of progressive collapse. The IDA is chosen to explicitly account for uncertainties in loads and system capacity. Fragility curves are developed to predict the probability of progressive collapse given the loss of one or more columns. At a broader scale, it will also provide critical information needed to support the development of a new generation of design codes that attempt to explicitly quantify structural robustness.

Digital Forensics Compute Cluster: A High Speed Distributed Computing Capability for Digital Forensics

We have developed a distributed computing capability, Digital Forensics Compute Cluster (DFORC2) to speed up the ingestion and processing of digital evidence that is resident on computer hard drives. DFORC2 parallelizes evidence ingestion and file processing steps. It can be run on a standalone computer cluster or in the Amazon Web Services (AWS) cloud. When running in a virtualized computing environment, its cluster resources can be dynamically scaled up or down using Kubernetes. DFORC2 is an open source project that uses Autopsy, Apache Spark and Kafka, and other open source software packages. It extends the proven open source digital forensics capabilities of Autopsy to compute clusters and cloud architectures, so digital forensics tasks can be accomplished efficiently by a scalable array of cluster compute nodes. In this paper, we describe DFORC2 and compare it with a standalone version of Autopsy when both are used to process evidence from hard drives of different sizes.

High-Fidelity 1D Dynamic Model of a Hydraulic Servo Valve Using 3D Computational Fluid Dynamics and Electromagnetic Finite Element Analysis

The dynamic performance of a 4-way solenoid operated hydraulic spool valve has been analyzed by means of a one-dimensional modeling approach capturing flow, magnetic and fluid forces, valve inertia forces, fluid compressibility, and damping. Increased model accuracy was achieved by analyzing the detailed three-dimensional electromagnetic behavior of the solenoids and flow behavior through the spool valve body for a set of relevant operating conditions, thereby allowing the accurate mapping of flow and magnetic forces on the moving valve body, in lieu of representing the respective forces by lower-order models or by means of simplistic textbook correlations. The resulting high-fidelity one-dimensional model provided the basis for specific and timely design modification eliminating experimentally observed valve oscillations.

Redundancy Component Matrix and Structural Robustness

We introduce the redundancy matrix that expresses clearly the geometrical/topological configuration of the structure. With the matrix, the redundancy of the structure is resolved into redundant components and assigned to each member or rigid joint. The values of the diagonal elements in the matrix indicates the importance of the corresponding members or rigid joints, and the geometrically correlations can be shown with the non-diagonal elements. If a member or rigid joint failures, reassignment of the redundant components can be calculated with the recursive method given in the paper. By combining the indexes of reliability and redundancy components, we define an index concerning the structural robustness. To further explain the properties of the redundancy matrix, we cited several examples of statically indeterminate structures, including two trusses and a rigid frame. With the examples, some simple results and the properties of the matrix are discussed. The examples also illustrate that the redundancy matrix and the relevant concepts are valuable in structural safety analysis.

The Effect of Self-Efficacy on Emotional Intelligence and Well-Being among Tour Guides

The concept of self-efficacy refers to people’s beliefs in their ability to perform certain behaviors and cope with environmental demands. As such, self-efficacy plays a key role in linking ability to performance. Therefore, this study examines the relationships of self-efficacy, emotional intelligence (EI), and well-being among tour guides, who act as intermediaries between tourists and an unfamiliar environment and significantly influence tourists’ impressions of a destination. Structural equation modeling (SEM) is used to identify the relationships between these factors. The results found that self-efficacy is positively associated with EI and well-being, and a positive link was seen between EI and well-being. This study has practical implications, as the results can facilitate the development of interventions for enhancing tour guides’ EI and self-efficacy competencies, which will benefit them in terms of both enhanced achievements and improved psychological happiness and well-being.

The Prediction of Sound Absorbing Coefficient for Multi-Layer Non-Woven

Automotive interior material consisting of several material layers has the sound-absorbing function. It is difficult to predict sound absorbing coefficient because of several material layers. So, many experimental tunings are required to achieve the target of sound absorption. Therefore, while the car interior materials are developed, so much time and money is spent. In this study, we present a method to predict the sound absorbing performance of the material with multi-layer using physical properties of each material. The properties are predicted by Foam-X software using the sound absorption coefficient data measured by impedance tube. Then, we will compare and analyze the predicted sound absorption coefficient with the data measured by scaled reverberation chamber and impedance tubes for a prototype. If the method is used instead of experimental tuning in the development of car interior material, the time and money can be saved, and then, the development effort can be reduced because it can be optimized by simulation.

A Real Time Expert System for Decision Support in Nuclear Power Plants

In case of abnormal situations, the nuclear power plant (NPP) operators must follow written procedures to check the condition of the plant and to classify the type of emergency. In this paper, we proposed a Real Time Expert System in order to improve operator’s performance in case of transient or accident with reactor shutdown. The expert system’s knowledge is based on the sequence of events (SoE) of known accident and two emergency procedures of the Brazilian Pressurized Water Reactor (PWR) NPP and uses two kinds of knowledge representation: rule and logic trees. The results show that the system was able to classify the response of the automatic protection systems, as well as to evaluate the conditions of the plant, diagnosing the type of occurrence, recovery procedure to be followed, indicating the shutdown root cause, and classifying the emergency level.

IOT Based Process Model for Heart Monitoring Process

Connecting health services with technology has a huge demand as people health situations are becoming worse day by day. In fact, engaging new technologies such as Internet of Things (IOT) into the medical services can enhance the patient care services. Specifically, patients suffering from chronic diseases such as cardiac patients need a special care and monitoring. In reality, some efforts were previously taken to automate and improve the patient monitoring systems. However, the previous efforts have some limitations and lack the real-time feature needed for chronic kind of diseases. In this paper, an improved process model for patient monitoring system specialized for cardiac patients is presented. A survey was distributed and interviews were conducted to gather the needed requirements to improve the cardiac patient monitoring system. Business Process Model and Notation (BPMN) language was used to model the proposed process. In fact, the proposed system uses the IOT Technology to assist doctors to remotely monitor and follow-up with their heart patients in real-time. In order to validate the effectiveness of the proposed solution, simulation analysis was performed using Bizagi Modeler tool. Analysis results show performance improvements in the heart monitoring process. For the future, authors suggest enhancing the proposed system to cover all the chronic diseases.

Analysis of Building Response from Vertical Ground Motions

Building structures are subjected to both horizontal and vertical ground motions during earthquakes, but only the horizontal ground motion has been extensively studied and considered in design. Most of the prevailing seismic codes assume the vertical component to be 1/2 to 2/3 of the horizontal one. In order to understand the building responses from vertical ground motions, many earthquakes records are studied in this paper. System identification methods (ARX Model) are used to analyze the strong motions and to find out the characteristics of the vertical amplification factors and the natural frequencies of buildings. Analysis results show that the vertical amplification factors for high-rise buildings and low-rise building are 1.78 and 2.52 respectively, and the average vertical amplification factor of all buildings is about 2. The relationship between the vertical natural frequency and building height was regressed to a suggested formula in this study. The result points out an important message; the taller the building is, the greater chance of resonance of vertical vibration on the building will be.

Residents’ Perceptions towards the Application of Vertical Landscape in Cairo, Egypt

Vertical landscape is introduced in this study as an alternative innovative technology for urban sustainable developments for its diverse environmental, economic, and psycho-social advantages. The main aim is to investigate the social acceptance of vertical landscape in Cairo, Egypt. The study objectives were to explore the perceptions of residents concerning this certain phenomenon and their opinions about its implementation. Survey questionnaires were administrated to 60 male and female residents from the Greater Cairo area. Despite the various concerns expressed about the application of vertical landscape, there was a clear majority of approval about its suitability. This is quite encouraging for the prospect of vertical landscape implementation in Cairo, Egypt.

Throughflow Effects on Thermal Convection in Variable Viscosity Ferromagnetic Liquids

The problem of thermal convection in temperature and magnetic field sensitive Newtonian ferromagnetic liquid is studied in the presence of uniform vertical magnetic field and throughflow. Using a combination of Galerkin and shooting techniques the critical eigenvalues are obtained for stationary mode. The effect of Prandtl number (Pr > 1) on onset is insignificant and nonlinearity of non-buoyancy magnetic parameter M3 is found to have no influence on the onset of ferroconvection. The magnetic buoyancy number, M1 and variable viscosity parameter, V have destabilizing influences on the system. The effect of throughflow Peclet number, Pe is to delay the onset of ferroconvection and this effect is independent of the direction of flow.

Effect of Segregation on the Reaction Rate of Sewage Sludge Pyrolysis in a Bubbling Fluidized Bed

The evolution of the pyrolysis of sewage sludge in a fixed and a fluidized bed was analyzed using a novel measuring technique. This original measuring technique consists of installing the whole reactor over a precision scale, capable of measuring the mass of the complete reactor with enough precision to detect the mass released by the sewage sludge sample during its pyrolysis. The inert conditions required for the pyrolysis process were obtained supplying the bed with a nitrogen flowrate, and the bed temperature was adjusted to either 500 ºC or 600 ºC using a group of three electric resistors. The sewage sludge sample was supplied through the top of the bed in a batch of 10 g. The measurement of the mass released by the sewage sludge sample was employed to determine the evolution of the reaction rate during the pyrolysis, the total amount of volatile matter released, and the pyrolysis time. The pyrolysis tests of sewage sludge in the fluidized bed were conducted using two different bed materials of the same size but different densities: silica sand and sepiolite particles. The higher density of silica sand particles induces a flotsam behavior for the sewage sludge particles which move close to the bed surface. In contrast, the lower density of sepiolite produces a neutrally-buoyant behavior for the sewage sludge particles, which shows a proper circulation throughout the whole bed in this case. The analysis of the evolution of the pyrolysis process in both fluidized beds show that the pyrolysis is faster when buoyancy effects are negligible, i.e. in the bed conformed by sepiolite particles. Moreover, sepiolite was found to show an absorbent capability for the volatile matter released during the pyrolysis of sewage sludge.

Eradication of Mental Illness through Buddhism

In this modern age, most people in developed and developing countries are affected by mental illness. There are many mental illnesses, and their differing symptoms impact peoples’ lives in different ways. These illnesses affect the way people think and feel, as well as how they behave with others. Mental illness results from compound interactions between the mind, body, and environment. New technologies and sciences make the world a better place. These technologies are becoming smarter and are being developed every day to help make daily life easier However, people suffer from mental illness in every part of the world. The philosophy propounded by the Buddha, Buddhism, teaches that all life is connected, from the microcosm to macrocosm. In the 2,500 years that elapsed since the death of the Buddha, his disciples have spread his teachings and developed sophisticated psycho-therapeutic methodologies. We can find many examples in Buddhist texts and in the modern age where Buddhist philosophy modern science could not solve. The Noble Eightfold Path, which is one of the main philosophies of Buddhism; it eradicates hatred and ill will and cultivates good deeds, kindness, and compassion. Buddhism, as a practice of dialectic conversation and mindfulness training, is full of rich therapeutic tools that the mental health community has adopted to help people. Similarly, Buddhist meditation is very necessary; it purifies thoughts and avoids unnecessary thinking. This research aims to study different causes of mental illness; analyzes the different approaches to eradicate mental illness problems and provides conclusions and recommendations present solutions through Buddhism in this modern age.

Attitude Stabilization of Satellites Using Random Dither Quantization

Recently, the effectiveness of random dither quantization method for linear feedback control systems has been shown in several papers. However, the random dither quantization method has not yet been applied to nonlinear feedback control systems. The objective of this paper is to verify the effectiveness of random dither quantization method for nonlinear feedback control systems. For this purpose, we consider the attitude stabilization problem of satellites using discrete-level actuators. Namely, this paper provides a control method based on the random dither quantization method for stabilizing the attitude of satellites using discrete-level actuators.