Elliptical Features Extraction Using Eigen Values of Covariance Matrices, Hough Transform and Raster Scan Algorithms

In this paper, we introduce a new method for elliptical object identification. The proposed method adopts a hybrid scheme which consists of Eigen values of covariance matrices, Circular Hough transform and Bresenham-s raster scan algorithms. In this approach we use the fact that the large Eigen values and small Eigen values of covariance matrices are associated with the major and minor axial lengths of the ellipse. The centre location of the ellipse can be identified using circular Hough transform (CHT). Sparse matrix technique is used to perform CHT. Since sparse matrices squeeze zero elements and contain a small number of nonzero elements they provide an advantage of matrix storage space and computational time. Neighborhood suppression scheme is used to find the valid Hough peaks. The accurate position of circumference pixels is identified using raster scan algorithm which uses the geometrical symmetry property. This method does not require the evaluation of tangents or curvature of edge contours, which are generally very sensitive to noise working conditions. The proposed method has the advantages of small storage, high speed and accuracy in identifying the feature. The new method has been tested on both synthetic and real images. Several experiments have been conducted on various images with considerable background noise to reveal the efficacy and robustness. Experimental results about the accuracy of the proposed method, comparisons with Hough transform and its variants and other tangential based methods are reported.

Conjugate Heat transfer over an Unsteady Stretching Sheet Mixed Convection with Magnetic Effect

A conjugate heat transfer for steady two-dimensional mixed convection with magnetic hydrodynamic (MHD) flow of an incompressible quiescent fluid over an unsteady thermal forming stretching sheet has been studied. A parameter, M, which is used to represent the dominance of the magnetic effect has been presented in governing equations. The similar transformation and an implicit finite-difference method have been used to analyze the present problem. The numerical solutions of the flow velocity distributions, temperature profiles, the wall unknown values of f''(0) and '(θ (0) for calculating the heat transfer of the similar boundary-layer flow are carried out as functions of the unsteadiness parameter (S), the Prandtl number (Pr), the space-dependent parameter (A) and temperature-dependent parameter (B) for heat source/sink and the magnetic parameter (M). The effects of these parameters have also discussed. At the results, it will produce greater heat transfer effect with a larger Pr and M, S, A, B will reduce heat transfer effects. At last, conjugate heat transfer for the free convection with a larger G has a good heat transfer effect better than a smaller G=0.

Power Quality Improvement Using PI and Fuzzy Logic Controllers Based Shunt Active Filter

In recent years the large scale use of the power electronic equipment has led to an increase of harmonics in the power system. The harmonics results into a poor power quality and have great adverse economical impact on the utilities and customers. Current harmonics are one of the most common power quality problems and are usually resolved by using shunt active filter (SHAF). The main objective of this work is to develop PI and Fuzzy logic controllers (FLC) to analyze the performance of Shunt Active Filter for mitigating current harmonics under balanced and unbalanced sinusoidal source voltage conditions for normal load and increased load. When the supply voltages are ideal (balanced), both PI and FLC are converging to the same compensation characteristics. However, the supply voltages are non-ideal (unbalanced), FLC offers outstanding results. Simulation results validate the superiority of FLC with triangular membership function over the PI controller.

Analysis of Climatic Strategies in Designing the Residential Buildings in Cold Dry Climate of Tabriz Metropolis to Reduce Air Pollution in Urban Environment

Nowadays, the earth is countered with serious problem of air pollution. This problem has been started from the industrial revolution and has been faster in recent years, so that leads the earth to ecological and environmental disaster. One of its results is the global warming problem and its related increase in global temperature. The most important factors in air pollution especially in urban environments are Automobiles and residential buildings that are the biggest consumers of the fossil energies, so that if the residential buildings as a big part of the consumers of such energies reduce their consumption rate, the air pollution will be decreased. Since Metropolises are the main centers of air pollution in the world, assessment and analysis of efficient strategies in decreasing air pollution in such cities, can lead to the desirable and suitable results and can solve the problem at least in critical level. Tabriz city is one of the most important metropolises in North west of Iran that about two million people are living there. for its situation in cold dry climate, has a high rate of fossil energies consumption that make air pollution in its urban environment. These two factors, being both metropolis and in cold dry climate, make this article try to analyze the strategies of climatic design in old districts of the city and use them in new districts of the future. These strategies can be used in this city and other similar cities and pave the way to reduce energy consumption and related air pollution to save whole world.

A Reconfigurable Distributed Multiagent System Optimized for Scalability

This paper proposes a novel solution for optimizing the size and communication overhead of a distributed multiagent system without compromising the performance. The proposed approach addresses the challenges of scalability especially when the multiagent system is large. A modified spectral clustering technique is used to partition a large network into logically related clusters. Agents are assigned to monitor dedicated clusters rather than monitor each device or node. The proposed scalable multiagent system is implemented using JADE (Java Agent Development Environment) for a large power system. The performance of the proposed topologyindependent decentralized multiagent system and the scalable multiagent system is compared by comprehensively simulating different fault scenarios. The time taken for reconfiguration, the overall computational complexity, and the communication overhead incurred are computed. The results of these simulations show that the proposed scalable multiagent system uses fewer agents efficiently, makes faster decisions to reconfigure when a fault occurs, and incurs significantly less communication overhead.

Investigating Sustainable Neighborhood Development in Jahanshahr

Nowadays, access to sustainable development in cities is assumed as one of the most important goals of urban managers. In the meanwhile, neighborhood as the smallest unit of urban spatial organization has a substantial effect on urban sustainability. Hence, attention to and focus on this subject is highly important in urban development plans. The objective of this study is evaluation of the status of Jahanshahr Neighborhood in Karaj city based on sustainable neighborhood development indicators. This research has been applied based on documentary method and field surveys. Also, evaluating of Jahanshahr Neighborhood of Karaj shows that it has a high level in sustainability in physical and economical dimension while a low level in cultural and social dimension. For this purpose, this neighborhood as a semi-sustainable neighborhood must take measures for development of collective spaces and efficiency of utilizing the public neighborhood spaces via collaboration of citizens and officials.

Laminar Free Convection of Nanofluid Flow in Horizontal Porous Annulus

A numerical study has been carried out to investigate the heat transfer by natural convection of nanofluid taking Cu as nanoparticles and the water as based fluid in a three dimensional annulus enclosure filled with porous media (silica sand) between two horizontal concentric cylinders with 12 annular fins of 2.4mm thickness attached to the inner cylinder under steady state conditions. The governing equations which used are continuity, momentum and energy equations under an assumptions used Darcy law and Boussinesq-s approximation which are transformed to dimensionless equations. The finite difference approach is used to obtain all the computational results using the MATLAB-7. The parameters affected on the system are modified Rayleigh number (10 ≤Ra*≤ 1000), fin length Hf (3, 7 and 11mm), radius ratio Rr (0.293, 0.365 and 0.435) and the volume fraction(0 ≤ ¤ò ≤ 0 .35). It was found that the average Nusselt number depends on (Ra*, Hf, Rr and φ). The results show that, increasing of fin length decreases the heat transfer rate and for low values of Ra*, decreasing Rr cause to decrease Nu while for Ra* greater than 100, decreasing Rr cause to increase Nu and adding Cu nanoparticles with 0.35 volume fraction cause 27.9% enhancement in heat transfer. A correlation for Nu in terms of Ra*, Hf and φ, has been developed for inner hot cylinder.

Seismic Behavior and Capacity/Demand Analyses of a Simply-Supported Multi-Span Precast Bridge

This paper presents the results of an analytical study on the seismic response of a Multi-Span-Simply-Supported precast bridge in Washington State. The bridge was built in the early 1960's along Interstate 5 and was widened the first time in 1979 and the second time in 2001. The primary objective of this research project is to determine the seismic vulnerability of the bridge in order to develop the required retrofit measure. The seismic vulnerability of the bridge is evaluated using two seismic evaluation methods presented in the FHWA Seismic Retrofitting Manual for Highway Bridges, Method C and Method D2. The results of the seismic analyses demonstrate that Method C and Method D2 vary markedly in terms of the information they provide to the bridge designer regarding the vulnerability of the bridge columns.

A Scenario Oriented Supplier Selection by Considering a Multi Tier Supplier Network

One of the main processes of supply chain management is supplier selection process which its accurate implementation can dramatically increase company competitiveness. In presented article model developed based on the features of second tiers suppliers and four scenarios are predicted in order to help the decision maker (DM) in making up his/her mind. In addition two tiers of suppliers have been considered as a chain of suppliers. Then the proposed approach is solved by a method combined of concepts of fuzzy set theory (FST) and linear programming (LP) which has been nourished by real data extracted from an engineering design and supplying parts company. At the end results reveal the high importance of considering second tier suppliers features as criteria for selecting the best supplier.

Analytical Solution for Free Vibration of Rectangular Kirchhoff Plate from Wave Approach

In this paper, an analytical approach for free vibration analysis of four edges simply supported rectangular Kirchhoff plates is presented. The method is based on wave approach. From wave standpoint vibration propagate, reflect and transmit in a structure. Firstly, the propagation and reflection matrices for plate with simply supported boundary condition are derived. Then, these matrices are combined to provide a concise and systematic approach to free vibration analysis of a simply supported rectangular Kirchhoff plate. Subsequently, the eigenvalue problem for free vibration of plates is formulated and the equation of plate natural frequencies is constructed. Finally, the effectiveness of the approach is shown by comparison of the results with existing classical solution.

Evaluation of Beauveria bassiana Spore Compatibility with Surfactants

The spores of entomopathogenic fungi, Beauveria bassiana was evaluated for their compatibility with four surfactants; SDS (sodium dodyl sulphate) and CABS-65 (calcium alkyl benzene sulphonate), Tween 20 (polyethylene sorbitan monolaureate) and Tween 80 (polyoxyethylene sorbitan monoleate) at six different concentrations (0.1%, 0.5%, 1%, 2.5%, 5% and 10%). Incubated spores showed decrease in concentrations due to conversion of spores to hyphae. The maximum germination recorded in 72 h incubated spores varied with surfactant concentration at 49-68% (SDS), 39- 53% (CABS), 78-92% (Tween 80) and 80-92% (Tween 20), while the optimal surfactant concentration for spore germination was found to be 2.5-5%. The surfactant effect on spores was more pronounced with SDS and CABS-65, where significant deterioration and loss in viability of the incubated spores was observed. The effect of Tween 20 and Tween 80 were comparatively less inhibiting. The results of the study would help in surfactant selection for B. bassiana emulsion preparation.

Fuzzy Control of the Air Conditioning System at Different Operating Pressures

The present work demonstrates the design and simulation of a fuzzy control of an air conditioning system at different pressures. The first order Sugeno fuzzy inference system is utilized to model the system and create the controller. In addition, an estimation of the heat transfer rate and water mass flow rate injection into or withdraw from the air conditioning system is determined by the fuzzy IF-THEN rules. The approach starts by generating the input/output data. Then, the subtractive clustering algorithm along with least square estimation (LSE) generates the fuzzy rules that describe the relationship between input/output data. The fuzzy rules are tuned by Adaptive Neuro-Fuzzy Inference System (ANFIS). The results show that when the pressure increases the amount of water flow rate and heat transfer rate decrease within the lower ranges of inlet dry bulb temperatures. On the other hand, and as pressure increases the amount of water flow rate and heat transfer rate increases within the higher ranges of inlet dry bulb temperatures. The inflection in the pressure effect trend occurs at lower temperatures as the inlet air humidity increases.

A Monte Carlo Method to Data Stream Analysis

Data stream analysis is the process of computing various summaries and derived values from large amounts of data which are continuously generated at a rapid rate. The nature of a stream does not allow a revisit on each data element. Furthermore, data processing must be fast to produce timely analysis results. These requirements impose constraints on the design of the algorithms to balance correctness against timely responses. Several techniques have been proposed over the past few years to address these challenges. These techniques can be categorized as either dataoriented or task-oriented. The data-oriented approach analyzes a subset of data or a smaller transformed representation, whereas taskoriented scheme solves the problem directly via approximation techniques. We propose a hybrid approach to tackle the data stream analysis problem. The data stream has been both statistically transformed to a smaller size and computationally approximated its characteristics. We adopt a Monte Carlo method in the approximation step. The data reduction has been performed horizontally and vertically through our EMR sampling method. The proposed method is analyzed by a series of experiments. We apply our algorithm on clustering and classification tasks to evaluate the utility of our approach.

XPM Response of Multiple Quantum Well chirped DFB-SOA All Optical Flip-Flop Switching

In this paper, based on the coupled-mode and carrier rate equations, derivation of a dynamic model and numerically analysis of a MQW chirped DFB-SOA all-optical flip-flop is done precisely. We have analyzed the effects of strains of QW and MQW and cross phase modulation (XPM) on the dynamic response, and rise and fall times of the DFB-SOA all optical flip flop. We have shown that strained MQW active region in under an optimized condition into a DFB-SOA with chirped grating can improve the switching ON speed limitation in such a of the device, significantly while the fall time is increased. The values of the rise times for such an all optical flip-flop, are obtained in an optimized condition, areas tr=255ps.

An investigation on the Effect of Continuous Phase Height on the First and Second Critical Rotor Speeds in a Rotary Disc Contactor

A Rotary Disc Contactor with inner diameter of 9.1cm and maximum operating height of 40cm has been used to investigate break up phenomenon. Water-Toluene, Water as continuous phase and Toluene as dispersed phase, was selected as chemical system in the experiments. The mentioned chemical system has high interfacial tension so it was possible to form big drops which permit accurate investigation on break up phenomenon as well as the first and second critical rotor speeds. In this study, Break up phenomenon has been studied as a function of mother drop size, rotor speed and continuous phase height. Further more; the effects of mother drop size and continuous phase height on the first and second critical rotor speeds were investigated. Finally, two modified correlations were proposed to estimate the first and second critical speeds.

Ezilla Cloud Service with Cassandra Database for Sensor Observation System

The main mission of Ezilla is to provide a friendly interface to access the virtual machine and quickly deploy the high performance computing environment. Ezilla has been developed by Pervasive Computing Team at National Center for High-performance Computing (NCHC). Ezilla integrates the Cloud middleware, virtualization technology, and Web-based Operating System (WebOS) to form a virtual computer in distributed computing environment. In order to upgrade the dataset and speedup, we proposed the sensor observation system to deal with a huge amount of data in the Cassandra database. The sensor observation system is based on the Ezilla to store sensor raw data into distributed database. We adopt the Ezilla Cloud service to create virtual machines and login into virtual machine to deploy the sensor observation system. Integrating the sensor observation system with Ezilla is to quickly deploy experiment environment and access a huge amount of data with distributed database that support the replication mechanism to protect the data security.

Signal-to-Noise Ratio Improvement of EMCCD Cameras

Over the past years, the EMCCD has had a profound influence on photon starved imaging applications relying on its unique multiplication register based on the impact ionization effect in the silicon. High signal-to-noise ratio (SNR) means high image quality. Thus, SNR improvement is important for the EMCCD. This work analyzes the SNR performance of an EMCCD with gain off and on. In each mode, simplified SNR models are established for different integration times. The SNR curves are divided into readout noise (or CIC) region and shot noise region by integration time. Theoretical SNR values comparing long frame integration and frame adding in each region are presented and discussed to figure out which method is more effective. In order to further improve the SNR performance, pixel binning is introduced into the EMCCD. The results show that pixel binning does obviously improve the SNR performance, but at the expensive of the spatial resolution.

Adsorption Capacity of Chitosan Beads in Toxic Solutions

The efficiency of chitosan beads processed from 4 marine animal shells; white leg shrimp (Litopenaeus vannamei), mud crab (Scylla sp.), horseshoe crab (Carcinoscorpius rotundicauda), and cuttlefish bone (Sepia sp.), for the adsorption experiments of ammonia and formaldehyde were investigated. The porosities of chitosan from the shells looked like beads were distinctly examined under SEM. The original pores of those shells on the surface areas compose of evenly fine pores. The shell beads of cuttlefish bone and horseshoe crab show the larger probably even porosity, while on those white leg shrimp and mud crab contain various large and fine pores. The best adsorption at pH 9 in 18 mg/l ammonia at 2 hours yield on cuttlefish bone, horseshoe crab, mud crab and white leg shrimp with the average percent of 59.12, 51.45, 45.66 and 43.52, respectively. Within 30 minutes the formaldehyde absorbers (at pH 5 in 8 μg/ml) revealed 46.27, 26.56, and 18.04 percent capacities in cuttlefish bone, mud crab and white leg shrimp beads; while 22.44 percent in the horseshoe crab at pH 7. The adsorption capacities and the amounts of beads showed a positive correlation. The adsorption capacity relationship between pH and the gas concentrations were affected by these qualities of chitosan beads.

Forming of Institutional Mechanism of Region's Innovative Development

The regional innovative competitiveness is an integrating characteristic of the innovative sphere of the region. It depends on a big variety of different parameters connected with all kinds of economic entities- activities. But management parameters shouldn't be irregular, so in order to avoid it, an institutional system should be formed. This system should carry out strategic management of factors having the greatest influence on the region's innovative development. This article is devoted to different aspects of organization of the region's development institutional mechanism, which is based on management of regional innovative competitiveness parameters. The base of the analysis is innovatively-active Russian regions which were compared according to the level of the innovative competitiveness. After that the most important parameters of successful innovative development of the region were revealed with the help of the correlation-regression analysis. The results of the research could be used for investigation of the region's innovative policy.

Faults Forecasting System

This paper presents Faults Forecasting System (FFS) that utilizes statistical forecasting techniques in analyzing process variables data in order to forecast faults occurrences. FFS is proposing new idea in detecting faults. Current techniques used in faults detection are based on analyzing the current status of the system variables in order to check if the current status is fault or not. FFS is using forecasting techniques to predict future timing for faults before it happens. Proposed model is applying subset modeling strategy and Bayesian approach in order to decrease dimensionality of the process variables and improve faults forecasting accuracy. A practical experiment, designed and implemented in Okayama University, Japan, is implemented, and the comparison shows that our proposed model is showing high forecasting accuracy and BEFORE-TIME.