Poor Medical Waste Management (MWM) Practices and Its Risks to Human Health and the Environment: A Literature Review

Medical care is vital for our life, health and well-being. But the waste generated from medical activities can be hazardous, toxic and even lethal because of their high potential for diseases transmission. The hazardous and toxic parts of waste from healthcare establishments comprising infectious, medical and radioactive material as well as sharps constitute a grave risks to mankind and the environment, if these are not properly treated / disposed or are allowed to be mixed with other municipal waste. In Nigeria, practical information on this aspect is inadequate and research on the public health implications of poor management of medical wastes is few and limited in scope. Findings drawn from Literature particularly in the third world countries highlights financial problems, lack of awareness of risks involved in MWM, lack of appropriate legislation and lack of specialized MWM staff. The paper recommends how MWM practices can be improved in medical facilities.

Efficient Oxyhydrogen Mixture Determination in Gas Detonation Forming

Oxyhydrogen is a mixture of Hydrogen (H2) and Oxygen (O2) gases. Detonative mixtures of oxyhydrogens with various combinations of these two gases were used in Gas Detonation Forming (GDF) to form sheets of mild steel. In die forming experiments, three types of conical dies with apex angles of 60, 90 and 120 degrees were used. Pressure of mixtures inside the chamber before detonation was varied from 3 Bar to 5 Bar to investigate the effect of pre-detonation pressure in the forming process. On each conical die, several experiments with different percentages of Hydrogen were carried out to determine the optimum gaseous mixture. According to our results the best forming process occurred when approximately 50-70%. Hydrogen was employed in the mixture. Furthermore, the experimental results were compared to the ones from FEM analysis. The FEM simulation results of thickness strain, hoop strain, thickness variation and deformed geometry are promising.

Identification of Single Nucleotide Polymorphism in 5'-UTR of CYP11B1 Gene in Pakistani Sahiwal Cattle

A major goal in animal genetics is to understand the role of common genetic variants in diseases susceptibility and production traits. Sahiwal cattle can be considered as a global animal genetic resource due to its relatively high milk producing ability, resistance against tropical diseases and heat tolerant. CYP11B1 gene provides instructions for making a mitochondrial enzyme called steroid 11-beta-hydroxylase. It catalyzes the 11deoxy-cortisol to cortisol and 11deoxycorticosterone to corticosterone in cattle. The bovine CYP11B1 gene is positioned on BTA14q12 comprises of eight introns and nine exons and protein is associated with mitochondrial epithelium. The present study was aimed to identify the single-nucleotide polymorphisms in CYP11B1 gene in Sahiwal cattle breed of Pakistan. Four polymorphic sites were identified in exon one of CYP11B1 gene through sequencing approach. Significant finding was the incidence of the C→T polymorphism in 5'-UTR, causing amino acid substitution from alanine to valine (A30V) in Sahiwal cattle breed. That Ala/Val polymorphism may serve as a powerful genetic tool for the development of DNA markers that can be used for the particular traits for different local cattle breeds.

Manipulation of Probiotics Fermentation of Yogurt by Cinnamon and Licorice: Effects on Yogurt Formation and Inhibition of Helicobacter Pylori Growth in vitro

Probiotic bacteria especially Lactobacillus spp. and Bifidobacterium exert suppressive effect on Helicobacter pylori. Cinnamon and licorice have been traditionally used for the treatment of gastric ulcer. The objectives of this study were to determine the effects of herbs on yogurt fermentation, the level of probiotic bacteria in yogurt during 28 days storage and the effect of herbal yogurt on the growth of H. pylori in vitro. Cinnamon or licorice was mixed with milk and the mixture was fermented with probiotic bacteria to form herbal-yogurt. Changes of pH and total titratable acids were monitored and the viability of probiotic bacteria was evaluated during and after refrigerated storage. The in vitro inhibition of H. pylori growth was determined using agar diffusion and minimum inhibitory concentration (MIC) method. The presence of herbs did not affect the probiotic population during storage. There were no significant differences in pH and TTA between herbal-yogurts and plain-yogurt during fermentation and storage. Water extract of cinnamon-yogurt showed the highest inhibition effect (13.5mm) on H. pylori growth in comparison with licorice-yogurt (11.2mm). The present findings indicate cinnamon and licorice has bioactive components to decrease the growth of H. pylori.

Various Information Obtained from Acoustic Emissions Owing to Discharges in XLPE Cable

An acoustic emission (AE) technique is useful for detection of partial discharges (PDs) at a joint and a terminal section of a cross-linked polyethylene (XLPE) cable. For AE technique, it is not difficult to detect a PD using AE sensors. However, it is difficult to grasp whether the detected AE signal is owing to a single discharge or not. Additionally, when an AE technique is applied at a terminal section of a XLPE cable in salt pollution district, for example, there is possibility of detection of AE signals owing to creeping discharges on the surface of electric power apparatus. In this study, we evaluated AE signals in order to grasp what kind of information we can get from detected AE signals. The results showed that envelop detection of AE signal and a period which some AE signals were continuously detected were good indexes for estimating state-of-discharge.

Manufacture of Electroless Nickel/YSZ Composite Coatings

The paper discusses optimising work on a method of processing ceramic / metal composite coatings for various applications and is based on preliminary work on processing anodes for solid oxide fuel cells (SOFCs). The composite coating is manufactured by the electroless co-deposition of nickel and yttria stabilised zirconia (YSZ) simultaneously on to a ceramic substrate. The effect on coating characteristics of substrate surface treatments and electroless nickel bath parameters such as pH and agitation methods are also investigated. Characterisation of the resulting deposit by scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDXA) is also discussed.

Evaluating the Standards of Hospital Pharmacies in Therapeutic Centers Affiliated with Kermanshah University of Medical Sciences, Iran

Nowadays pharmaceutical care departments located in hospitals are amongst the important pillars of the healthcare system. The aim of this study was to evaluate quality of hospital drugstores affiliated with Kermanshah University of Medical Sciences. In this cross-sectional study a validated questionnaire was used. The questionnaire was filled in by the one of the researchers in all seventeen hospital drugstores located in the teaching and nonteaching hospitals affiliated with Kermanshah University of Medical Sciences. The results shows that in observed hospitals,24% of pharmacy environments, 25% of pharmacy store and storage conditions, 49% of storage procedure, 25% of ordering drugs and supplies, 73% of receiving supplies (proper procedure are fallowed for receiving supplies), 35% of receiving supplies (prompt action taken if deterioration of drugs received is suspected), 23.35% of drugs delivery to patients and finally 0% of stock cards are used for proper inventory control have full compliance with standards.

Reduction of Overheads with Dynamic Caching in Fixed AODV based MANETs

In this paper we show that adjusting ART in accordance with static network scenario can substantially improve the performance of AODV by reducing control overheads. We explain the relationship of control overheads with network size and request patterns of the users. Through simulation we show that making ART proportionate to network static time reduces the amount of control overheads independent of network size and user request patterns.

A Web Designer Agent, Based On Usage Mining Online Behavior of Visitors

Website plays a significant role in success of an e-business. It is the main start point of any organization and corporation for its customers, so it's important to customize and design it according to the visitors' preferences. Also, websites are a place to introduce services of an organization and highlight new service to the visitors and audiences. In this paper, we will use web usage mining techniques, as a new field of research in data mining and knowledge discovery, in an Iranian government website. Using the results, a framework for web content layour is proposed. An agent is designed to dynamically update and improve web links locations and layout. Then, we will explain how it is used to directly enable top managers of the organization to influence on the arrangement of web contents and also to enhance customization of web site navigation due to online users' behaviors.

Performance Enhancement of Cellular OFDM Based Wireless LANs by Exploiting Spatial Diversity Techniques

This paper represents an investigation on how exploiting multiple transmit antennas by OFDM based wireless LAN subscribers can mitigate physical layer error rate. Then by comparing the Wireless LANs that utilize spatial diversity techniques with the conventional ones it will reveal how PHY and TCP throughputs behaviors are ameliorated. In the next step it will assess the same issues based on a cellular context operation which is mainly introduced as an innovated solution that beside a multi cell operation scenario benefits spatio-temporal signaling schemes as well. Presented simulations will shed light on the improved performance of the wide range and high quality wireless LAN services provided by the proposed approach.

Electron Filling Factor and Sunlight Concentration Effects on the Efficiency of Intermediate Band Solar Cell

For a determined intermediate band position, the effects of electron filling factor and sunlight concentration on the active region thickness and efficiency of the quantum-dot intermediate band solar cell are calculated. For each value of electron filling factor, the maximum point of efficiency obtained and resulted in the optimum thickness of the cell under three different sunlight concentrations. We show the importance of filling factor as a parameter to be more considered. The photon recycling effect eliminated in all calculations.

Optical Characterization of a Microwave Plasma Torch for Hydrogen Production

Hydrogen sulfide (H2S) is a very toxic gas that is produced in very large quantities in the oil and gas industry. It cannot be flared to the atmosphere and Claus process based gas plants are used to recover the sulfur and convert the hydrogen to water. In this paper, we present optical characterization of an atmospheric pressure microwave plasma torch for H2S dissociation into hydrogen and sulfur. The torch is operated at 2.45 GHz with power up to 2 kW. Three different gases can simultaneously be injected in the plasma torch. Visual imaging and optical emission spectroscopy are used to characterize the plasma for varying gas flow rates and microwave power. The plasma length, emission spectra and temperature are presented. The obtained experimental results validate our earlier published simulation results of plasma torch.

Combining Diverse Neural Classifiers for Complex Problem Solving: An ECOC Approach

Combining classifiers is a useful method for solving complex problems in machine learning. The ECOC (Error Correcting Output Codes) method has been widely used for designing combining classifiers with an emphasis on the diversity of classifiers. In this paper, in contrast to the standard ECOC approach in which individual classifiers are chosen homogeneously, classifiers are selected according to the complexity of the corresponding binary problem. We use SATIMAGE database (containing 6 classes) for our experiments. The recognition error rate in our proposed method is %10.37 which indicates a considerable improvement in comparison with the conventional ECOC and stack generalization methods.

A Cheating Model for Cellular Automata-Based Secret Sharing Schemes

Cellular automata have been used for design of cryptosystems. Recently some secret sharing schemes based on linear memory cellular automata have been introduced which are used for both text and image. In this paper, we illustrate that these secret sharing schemes are vulnerable to dishonest participants- collusion. We propose a cheating model for the secret sharing schemes based on linear memory cellular automata. For this purpose we present a novel uniform model for representation of all secret sharing schemes based on cellular automata. Participants can cheat by means of sending bogus shares or bogus transition rules. Cheaters can cooperate to corrupt a shared secret and compute a cheating value added to it. Honest participants are not aware of cheating and suppose the incorrect secret as the valid one. We prove that cheaters can recover valid secret by removing the cheating value form the corrupted secret. We provide methods of calculating the cheating value.

Using Heuristic Rules from Sentence Decomposition of Experts- Summaries to Detect Students- Summarizing Strategies

Summarizing skills have been introduced to English syllabus in secondary school in Malaysia to evaluate student-s comprehension for a given text where it requires students to employ several strategies to produce the summary. This paper reports on our effort to develop a computer-based summarization assessment system that detects the strategies used by the students in producing their summaries. Sentence decomposition of expert-written summaries is used to analyze how experts produce their summary sentences. From the analysis, we identified seven summarizing strategies and their rules which are then transformed into a set of heuristic rules on how to determine the summarizing strategies. We developed an algorithm based on the heuristic rules and performed some experiments to evaluate and support the technique proposed.

The Effect of Hylocereus polyrhizus and Hylocereus undatus on Physicochemical, Proteolysis, and Antioxidant Activity in Yogurt

Yogurt is a coagulated milk product obtained from the lactic acid fermentation by the action of Lactobacillus bulgaricus and Streptococcus thermophilus. The additions of fruits into milk may enhance the taste and the therapeutical values of milk products. However fruits also may change the fermentation behaviour. In this present study, the changes in physicochemical, the peptide concentration, total phenolics content and the antioxidant potential of yogurt upon the addition of Hylocereus polyrhizus and Hylocereus undatus (white and red dragon fruit) were investigated. Fruits enriched yogurt (10%, 20%, 30% w/w) were prepared and the pH, TTA, syneresis measurement, peptide concentration, total phenolics content and DPPH antioxidant inhibition percentage were determined. Milk fermentation rate was enhanced in red dragon fruit yogurt for all doses (-0.3606 - -0.4126 pH/h) while only white dragon fruit yogurt with 20% and 30% (w/w) composition showed increment in fermentation rate (-0.3471 - -0.3609 pH/h) compared to plain yogurt (-0.3369pH/h). All dragon fruit enriched yogurts generally showed lower pH readings (pH 3.95 - 4.03) compared to plain yogurt (pH 4.05). Both fruit yogurts showed a higher lactic acid percentage (1.14-1.23%) compared to plain yogurt (1.08%). Significantly higher syneresis percentage (57.19 - 70.32%) compared to plain yogurt (52.93%) were seen in all fruit enriched yogurts. The antioxidant activity of plain yogurt (19.16%) was enhanced by the presence of white and red dragon fruit (24.97- 45.74%). All fruit enriched yogurt showed an increment in total phenolic content (36.44 - 64.43mg/ml) compared to plain yogurt (20.25mg/ml). However, the addition of white and red dragon fruit did not enhance the proteolysis of milk during fermentation. Therefore, it could be concluded that the addition of white and red dragon fruit into yogurt enhanced the milk fermentation rate, lactic acid content, syneresis percentage, antioxidant activity, and total phenolics content in yogurt.

A Probabilistic Reinforcement-Based Approach to Conceptualization

Conceptualization strengthens intelligent systems in generalization skill, effective knowledge representation, real-time inference, and managing uncertain and indefinite situations in addition to facilitating knowledge communication for learning agents situated in real world. Concept learning introduces a way of abstraction by which the continuous state is formed as entities called concepts which are connected to the action space and thus, they illustrate somehow the complex action space. Of computational concept learning approaches, action-based conceptualization is favored because of its simplicity and mirror neuron foundations in neuroscience. In this paper, a new biologically inspired concept learning approach based on the probabilistic framework is proposed. This approach exploits and extends the mirror neuron-s role in conceptualization for a reinforcement learning agent in nondeterministic environments. In the proposed method, instead of building a huge numerical knowledge, the concepts are learnt gradually from rewards through interaction with the environment. Moreover the probabilistic formation of the concepts is employed to deal with uncertain and dynamic nature of real problems in addition to the ability of generalization. These characteristics as a whole distinguish the proposed learning algorithm from both a pure classification algorithm and typical reinforcement learning. Simulation results show advantages of the proposed framework in terms of convergence speed as well as generalization and asymptotic behavior because of utilizing both success and failures attempts through received rewards. Experimental results, on the other hand, show the applicability and effectiveness of the proposed method in continuous and noisy environments for a real robotic task such as maze as well as the benefits of implementing an incremental learning scenario in artificial agents.

Finite Element Simulation of Multi-Stage Deep Drawing Processes and Comparison with Experimental Results

The plastic forming process of sheet plate takes an important place in forming metals. The traditional techniques of tool design for sheet forming operations used in industry are experimental and expensive methods. Prediction of the forming results, determination of the punching force, blank holder forces and the thickness distribution of the sheet metal will decrease the production cost and time of the material to be formed. In this paper, multi-stage deep drawing simulation of an Industrial Part has been presented with finite element method. The entire production steps with additional operations such as intermediate annealing and springback has been simulated by ABAQUS software under axisymmetric conditions. The simulation results such as sheet thickness distribution, Punch force and residual stresses have been extracted in any stages and sheet thickness distribution was compared with experimental results. It was found through comparison of results, the FE model have proven to be in close agreement with those of experiment.

Municipal Solid Waste: Pre-Treatment Options and Benefits on Landfill Emissions

Municipal solid waste (MSW) comprises of a wide range of heterogeneous materials generated by individual, household or organization and may include food waste, garden wastes, papers, textiles, rubbers, plastics, glass, ceramics, metals, wood wastes, construction wastes but it is not limited to the above mentioned fractions. The most common Municipal Solid Waste pretreatment method in use is thermal pretreatment (incineration) and Mechanical Biological pretreatment. This paper presents an overview of these two pretreatment methods describing their benefits and laboratory scale reactors that simulate landfill conditions were constructed in order to compare emissions in terms of biogas production and leachate contamination between untreated Municipal Solid Waste and Mechanical Biological Pretreated waste. The findings of this study showed that Mechanical Biological pretreatment of waste reduces the emission level of waste and the benefit over the landfilling of untreated waste is significant.

A Cost Function for Joint Blind Equalization and Phase Recovery

In this paper a new cost function for blind equalization is proposed. The proposed cost function, referred to as the modified maximum normalized cumulant criterion (MMNC), is an extension of the previously proposed maximum normalized cumulant criterion (MNC). While the MNC requires a separate phase recovery system after blind equalization, the MMNC performs joint blind equalization and phase recovery. To achieve this, the proposed algorithm maximizes a cost function that considers both amplitude and phase of the equalizer output. The simulation results show that the proposed algorithm has an improved channel equalization effect than the MNC algorithm and simultaneously can correct the phase error that the MNC algorithm is unable to do. The simulation results also show that the MMNC algorithm has lower complexity than the MNC algorithm. Moreover, the MMNC algorithm outperforms the MNC algorithm particularly when the symbols block size is small.