Simulation of Dam Break using Finite Volume Method

Today, numerical simulation is a powerful tool to solve various hydraulic engineering problems. The aim of this research is numerical solutions of shallow water equations using finite volume method for Simulations of dam break over wet and dry bed. In order to solve Riemann problem, Roe-s approximate solver is used. To evaluate numerical model, simulation was done in 1D and 2D states. In 1D state, two dam break test over dry bed (with and without friction) were studied. The results showed that Structural failure around the dam and damage to the downstream constructions in bed without friction is more than friction bed. In 2D state, two tests for wet and dry beds were done. Generally in wet bed case, waves are propagated to canal sides but in dry bed it is not significant. Therefore, damage to the storage facilities and agricultural lands in wet bed case is more than in dry bed.

Integration of Fixed and Variable Speed Wind Generator Dynamics with Multimachine AC Systems

The impact of fixed speed squirrel cage type as well as variable speed doubly fed induction generators (DFIG) on dynamic performance of a multimachine power system has been investigated. Detailed models of the various components have been presented and the integration of asynchronous and synchronous generators has been carried out through a rotor angle based transform. Simulation studies carried out considering the conventional dynamic model of squirrel cage asynchronous generators show that integration, as such, could degrade to the AC system performance transiently. This article proposes a frequency or power controller which can effectively control the transients and restore normal operation of fixed speed induction generator quickly. Comparison of simulation results between classical cage and doubly-fed induction generators indicate that the doubly fed induction machine is more adaptable to multimachine AC system. Frequency controller installed in the DFIG system can also improve its transient profile.

Analytical Study of Sedimentation Formation in Lined Canals using the SHARC Software- A Case Study of the Sabilli Canal in Dezful, Iran

Sediment formation and its transport along the river course is considered as important hydraulic consideration in river engineering. Their impact on the morphology of rivers on one hand and important considerations of which in the design and construction of the hydraulic structures on the other has attracted the attention of experts in arid and semi-arid regions. Under certain conditions where the momentum energy of the flow stream reaches a specific rate, the sediment materials start to be transported with the flow. This can usually be analyzed in two different categories of suspended and bed load materials. Sedimentation phenomenon along the waterways and the conveyance of vast volume of materials into the canal networks can potentially influence water abstraction in the intake structures. This can pose a serious threat to operational sustainability and water delivery performance in the canal networks. The situation is serious where ineffective watershed management (poor vegetation cover in the water basin) is the underlying cause of soil erosion which feeds the materials into the waterways that intern would necessitate comprehensive study. The present paper aims to present an analytical investigation of the sediment process in the waterways on one hand and estimation of the sediment load transport into the lined canals using the SHARC software on the other. For this reason, the paper focuses on the comparative analysis of the hydraulic behaviors of the Sabilli main canal that feeds the pumping station with that of the Western canal in the Greater Dezful region to identify effective factors in sedimentation and ways of mitigating their impact on water abstraction in the canal systems. The method involved use of observational data available in the Dezful Dastmashoon hydrometric station along a 6 km waterway of the Sabilli main canal using the SHARC software to estimate the suspended load concentration and bed load materials. Results showed the transport of a significant volume of sediment loads from the waterways into the canal system which is assumed to have arisen from the absence of stilling basin on one hand and the gravity flow on the other has caused serious challenges. This is contrary to what occurs in the Sabilli canal, where the design feature which incorporates a settling basin just before the pumping station is the major cause of reduced sediment load transport into the canal system.Results showed that modification of the present design features by constructing a settling basin just upstream of the western intake structure can considerably reduce the entry of sediment materials into the canal system. Not only this can result in the sustainability of the hydraulic structures but can also improve operational performance of water conveyance and distribution system, all of which are the pre-requisite to secure reliable and equitable water delivery regime for the command area.

A Hybrid Neural Network and Gravitational Search Algorithm (HNNGSA) Method to Solve well known Wessinger's Equation

This study presents a hybrid neural network and Gravitational Search Algorithm (HNGSA) method to solve well known Wessinger's equation. To aim this purpose, gravitational search algorithm (GSA) technique is applied to train a multi-layer perceptron neural network, which is used as approximation solution of the Wessinger's equation. A trial solution of the differential equation is written as sum of two parts. The first part satisfies the initial/ boundary conditions and does not contain any adjustable parameters and the second part which is constructed so as not to affect the initial/boundary conditions. The second part involves adjustable parameters (the weights and biases) for a multi-layer perceptron neural network. In order to demonstrate the presented method, the obtained results of the proposed method are compared with some known numerical methods. The given results show that presented method can introduce a closer form to the analytic solution than other numerical methods. Present method can be easily extended to solve a wide range of problems.

Prediction of Watermelon Consumer Acceptability based on Vibration Response Spectrum

It is difficult to judge ripeness by outward characteristics such as size or external color. In this paper a nondestructive method was studied to determine watermelon (Crimson Sweet) quality. Responses of samples to excitation vibrations were detected using laser Doppler vibrometry (LDV) technology. Phase shift between input and output vibrations were extracted overall frequency range. First and second were derived using frequency response spectrums. After nondestructive tests, watermelons were sensory evaluated. So the samples were graded in a range of ripeness based on overall acceptability (total desired traits consumers). Regression models were developed to predict quality using obtained results and sample mass. The determination coefficients of the calibration and cross validation models were 0.89 and 0.71 respectively. This study demonstrated feasibility of information which is derived vibration response curves for predicting fruit quality. The vibration response of watermelon using the LDV method is measured without direct contact; it is accurate and timely, which could result in significant advantage for classifying watermelons based on consumer opinions.

A Study of Relationship between WBGT and Relative Humidity to Worker Performance

The environmental factors such as temperature and relative humidity are very contribute to the effect of comfort, health, performance and worker productivity. To ensure an ergonomics work environment, it is possible to require a specific attention especially in industries. The aim of this study is to show the effect of temperature and relative humidity on worker productivity in automotive industry by taking a workstation in an automotive plant as the location to conduct the study. From the analysis of the data, there were relationship between temperature and relative humidity on worker productivity. Mathematical equation to represent the relationship between temperatures and relative humidity on the production rate is modelled. From the equation model, the production rate for the workstation can be predicted base on the value of temperature and relative humidity.

The Numerical Study of Low Level Jets Formation in South Eastern of Iran

The presence of cold air with the convergent topography of the Lut valley over the valley-s sloping terrain can generate Low Level Jets (LLJ). Moreover, the valley-parallel pressure gradients and northerly LLJ are produced as a result of the large-scale processes. In the numerical study the regional MM5 model was run leading to achieve an appropriate dynamical analysis of flows in the region for summer and winter. The results of this study show the presence of summer synoptical systems cause the formation of north-south pressure gradients in the valley which could be led to the blowing of winds with the velocity more than 14 ms-1 and vulnerable dust and wind storms lasting more than 120 days. Whereas the presence of cold air masses in the region in winter, cause the average speed of LLJs decrease. In this time downslope flows are noticeable in creating the night LLJs.

Routing Algorithm for a Clustered Network

The Cluster Dimension of a network is defined as, which is the minimum cardinality of a subset S of the set of nodes having the property that for any two distinct nodes x and y, there exist the node Si, s2 (need not be distinct) in S such that ld(x,s1) — d(y, s1)1 > 1 and d(x,s2) < d(x,$) for all s E S — {s2}. In this paper, strictly non overlap¬ping clusters are constructed. The concept of LandMarks for Unique Addressing and Clustering (LMUAC) routing scheme is developed. With the help of LMUAC routing scheme, It is shown that path length (upper bound)PLN,d < PLD, Maximum memory space requirement for the networkMSLmuAc(Az) < MSEmuAc < MSH3L < MSric and Maximum Link utilization factor MLLMUAC(i=3) < MLLMUAC(z03) < M Lc

Pathogen Removal Under the Influence of Iron

Drinking water is one of the most valuable resources available to mankind. The presence of pathogens in drinking water is highly undesirable. Because of the Lateritic soil, the iron concentrations were high in ground water. High concentration of iron and other trace elements could restrict bacterial growth and modify their metabolic pattern as well. The bacterial growth rate reduced in the presence of iron in water. This paper presents the results of a controlled laboratory study conducted to assess the inhibition of micro-organism (pathogen) in well waters in the presence of dissolved iron concentrations. Synthetic samples were studied in the laboratory and the results compared with field samples. Predictive model for microbial inhibition in the presence of iron is presented. It was seen that the bore wells, open wells and the field results varied, probably due to the nature of micro-organism utilizing the iron in well waters.

Natural Convection Boundary Layer Flow of a Viscoelastic Fluid on Solid Sphere with Newtonian Heating

The present paper considers the steady free convection boundary layer flow of a viscoelastic fluid on solid sphere with Newtonian heating. The boundary layer equations are an order higher than those for the Newtonian (viscous) fluid and the adherence boundary conditions are insufficient to determine the solution of these equations completely. Thus, the augmentation an extra boundary condition is needed to perform the numerical computational. The governing boundary layer equations are first transformed into non-dimensional form by using special dimensionless group and then solved by using an implicit finite difference scheme. The results are displayed graphically to illustrate the influence of viscoelastic K and Prandtl Number Pr parameters on skin friction, heat transfer, velocity profiles and temperature profiles. Present results are compared with the published papers and are found to concur very well.

Thermal and Mechanical Buckling of Short and Long Functionally Graded Cylindrical Shells Using First Order Shear Deformation Theory

This paper presents the buckling analysis of short and long functionally graded cylindrical shells under thermal and mechanical loads. The shell properties are assumed to vary continuously from the inner surface to the outer surface of the shell. The equilibrium and stability equations are derived using the total potential energy equations, Euler equations and first order shear deformation theory assumptions. The resulting equations are solved for simply supported boundary conditions. The critical temperature and pressure loads are calculated for both short and long cylindrical shells. Comparison studies show the effects of functionally graded index, loading type and shell geometry on critical buckling loads of short and long functionally graded cylindrical shells.

What Deter Academia to Share Knowledge within Research-Based University Status

This paper discusses the issues and challenge that academia faced in knowledge sharing at a research university in Malaysia. The partial results of interview are presented from the actual study. The main issues in knowledge sharing practices are university structure and designation and title. The academia awareness in sharing knowledge is also influenced by culture. Our investigation highlight that the concept of reciprocal relationship of sharing knowledge may hinder knowledge sharing awareness among academia. Hence, we concluded that further investigation could be carried out on the social interaction and trust culture among academia in sharing knowledge within research/ranking university environment.