Investigation of Syngas Production from Waste Gas and Ratio Adjustment using a Fischer-Tropsch Synthesis Reactor

In this study, a reformer model simulation to use refinery (Farashband refinery, Iran) waste natural gas. In the petroleum and allied sectors where natural gas is being encountered (in form of associated gas) without prior preparation for its positive use, its combustion (which takes place in flares, an equipment through which they are being disposed) has become a great problem because of its associated environmental problems in form of gaseous emission. The proposed model is used to product syngas from waste natural gas. A detailed steady model described by a set of ordinary differential and algebraic equations was developed to predict the behavior of the overall process. The proposed steady reactor model was validated against process data of a reformer synthesis plant recorded and a good agreement was achieved. H2/CO ratio has important effect on Fischer- Tropsch synthesis reactor product and we try to achieve this parameter with best designing reformer reactor. We study different kind of reformer reactors and then select auto thermal reforming process of natural gas in a fixed bed reformer that adjustment H2/CO ratio with CO2 and H2O injection. Finally a strategy was proposed for prevention of extra natural gas to atmosphere.

Promising Immobilization of Cadmium and Lead inside Ca-rich Glass-ceramics

Considering toxicity of heavy metals and their accumulation in domestic wastes, immobilization of lead and cadmium is envisaged inside glass-ceramics. We particularly focused this work on calcium-rich phases embedded in a glassy matrix. Glass-ceramics were synthesized from glasses doped with 12 wt% and 16 wt% of PbO or CdO. They were observed and analyzed by Electron MicroProbe Analysis (EMPA) and Analytical Scanning Electron Microscopy (ASEM). Structural characterization of the samples was performed by powder XRay Diffraction. Diopside crystals of CaMgSi2O6 composition are shown to incorporate significant amounts of cadmium (up to 9 wt% of CdO). Two new crystalline phases are observed with very high Cd or Pb contents: about 40 wt% CdO for the cadmiumrich phase and near 60 wt% PbO for the lead-rich phase. We present complete chemical and structural characterization of these phases. They represent a promising way for the immobilization of toxic elements like Cd or Pb since glass ceramics are known to propose a “double barrier" protection (metal-rich crystals embedded in a glass matrix) against metal release in the environment.

Application of Biogas Technology in Turkey

The potential, opportunities and drawbacks of biogas technology use in Turkey are evaluated in this paper. Turkey is dependent on foreign sources of energy. Therefore, use of biogas technology would provide a safe way of waste disposal and recovery of renewable energy, particularly from a sustainable domestic source, which is less unlikely to be influenced by international price or political fluctuations. Use of biogas technology would especially meet the cooking, heating and electricity demand in rural areas and protect the environment, additionally creating new job opportunities and improving social-economical conditions.

Performance of Ground Clay Bricks as Partial Cement Replacement in Grade 30 Concrete

Demolitions of buildings have created a lot of waste and one of it is clay bricks. The waste clay bricks were ground to roughly cement fineness and used to partially replaced cement at 10%, 20% and 30% with w/b ratio of 0.6 and tested at 7, 28, 60, 90 and 120 days. The result shows that the compressive strength of GCB concrete increases over age however, decreases as the level of replacements increases. It was also found that 10% replacement of GCB gave the highest compressive strength, however for optimum replacement, 30% was chosen as it still attained strength of grade 30 concrete. In terms of durability performances, results show that GCB replacement up to 30% was found to be efficient in reducing water absorption as well as water permeability. These studies show that GCB has the potential to be used as partial cement replacement in making concrete.

Effect of Real Wastewater on Biotransformation of 17α-ethynylestradiol by Ammonia-Oxidizing Bacteria in Nitrifying Activated Sludge

17α-ethynylestradiol (EE2) is a synthetic estrogen used as a key ingredient in an oral contraceptives pill. EE2 is an endocrine disrupting compound, high in estrogenic potency. Although EE2 exhibits low degree of biodegradability with common microorganisms in wastewater treatment plants (WWTPs), this compound can be biotransformed by ammonia-oxidizing bacteria (AOB) via a co-metabolism mechanism in WWTPs. This study aimed to investigate the effect of real wastewater on biotransformation of EE2 by AOB. A preliminary experiment on the effect of nitrite and pH levels on abiotic transformation of EE2 suggested that the abiotic transformation occurred at only pH

2D Graphical Analysis of Wastewater Influent Capacity Time Series

The extraction of meaningful information from image could be an alternative method for time series analysis. In this paper, we propose a graphical analysis of time series grouped into table with adjusted colour scale for numerical values. The advantages of this method are also discussed. The proposed method is easy to understand and is flexible to implement the standard methods of pattern recognition and verification, especially for noisy environmental data.

Determination of Temperature and Velocity Fields in a Corridor at a Central Interim Spent Fuel Storage Facility Using Numerical Simulation

The presented article deals with the description of a numerical model of a corridor at a Central Interim Spent Fuel Storage Facility (hereinafter CISFSF). The model takes into account the effect of air flows on the temperature of stored waste. The computational model was implemented in the ANSYS/CFX programming environment in the form of a CFD task solution, which was compared with an approximate analytical calculation. The article includes a categorization of the individual alternatives for the ventilation of such underground systems. The aim was to evaluate a ventilation system for a CISFSF with regard to its stability and capacity to provide sufficient ventilation for the removal of heat produced by stored casks with spent nuclear fuel.

Mathematical Models for Overall Gas Transfer Coefficient Using Different Theories and Evaluating Their Measurement Accuracy

Oxygen transfer, the process by which oxygen is transferred from the gaseous to liquid phase, is a vital part of the waste water treatment process. Because of low solubility of oxygen and consequent low rate of oxygen transfer, sufficient oxygen to meet the requirement of aerobic waste does not enter through normal surface air water interface. Many theories have come up in explaining the mechanism of gas transfer and absorption of non-reacting gases in a liquid, of out of which, Two film theory is important. An exiting mathematical model determines approximate value of Overall Gas Transfer coefficient. The Overall Gas Transfer coefficient, in case of Penetration theory, is 1.13 time more than that obtained in case of Two film theory. The difference is due to the difference in assumptions in the two theories. The paper aims at development of mathematical model which determines the value of Overall Gas Transfer coefficient with greater accuracy than the existing model.

Phytoremediation of Wastewater Using Some of Aquatic Macrophytes as Biological Purifiers for Irrigation Purposes

An attempt was made for availability of wastewater reuse/reclamation for irrigation purposes using phytoremediation “the low cost and less technology", using six local aquatic macrophytes “e.g. T. angustifolia, B. maritimus, Ph. australis, A. donax, A. plantago-aquatica and M. longifolia (Linn)" as biological waste purifiers. Outdoor experiments/designs were conducted from May 03, 2007 till October 15, 2008, close to one of the main sewage channels of Sulaimani City/Iraq*. All processes were mainly based on conventional wastewater treatment processes, besides two further modifications were tested, the first was sand filtration pots, implanted by individual species of experimental macrophytes and the second was constructed wetlands implanted by experimental macrophytes all together. Untreated and treated wastewater samples were analyzed for their key physico-chemical properties (only heavy metals Fe, Mn, Zn and Cu with particular reference to removal efficiency by experimental macrophytes are highlighted in this paper). On the other hand, vertical contents of heavy metals were also evaluated from both pots and the cells of constructed wetland. After 135 days, macrophytes were harvested and heavy metals were analyzed in their biomass (roots/shoots) for removal efficiency assessment (i.e. uptake/ bioaccumulation rate). Results showed that; removal efficiency of all studied heavy metals was much higher in T. angustifolia followed by Ph. Australis, B. maritimus and A. donax in triple experiment sand pots. Constructed wetland experiments have revealed that; the more replicated constructed wetland cells the highest heavy metal removal efficiency was indicated.

Sweet Corn Water Productivity under Several Deficit Irrigation Regimes Applied during Vegetative Growth Stage using Treated Wastewater as Water Irrigation Source

Yield and Crop Water Productivity are crucial issues in sustainable agriculture, especially in high-demand resource crops such as sweet corn. This study was conducted to investigate agronomic responses such as plant growth, yield and soil parameters (EC and Nitrate accumulation) to several deficit irrigation treatments (100, 75, 50, 25 and 0% of ETm) applied during vegetative growth stage, rainfed treatment was also tested. The finding of this research indicates that under deficit irrigation during vegetative growth stage applying 75% of ETm lead to increasing of 19.4% in terms of fresh ear yield, 9.4% in terms of dry grain yield, 10.5% in terms of number of ears per plant, 11.5% for the 1000 grains weight and 19% in terms of crop water productivity compared with fully irrigated treatment. While those parameters in addition to root, shoot and plant height has been affected by deficit irrigation during vegetative growth stage when increasing water stress degree more than 50% of ETm.

Oxidation of Selected Pharmaceuticals in Water Matrices by Bromine and Chlorine

The bromination of five selected pharmaceuticals (metoprolol, naproxen, amoxicillin, hydrochlorotiazide and phenacetin) in ultrapure water and in three water matrices (a groundwater, a surface water from a public reservoir and a secondary effluent from a WWTP) was investigated. The apparent rate constants for the bromination reaction were determined as a function of the pH, and the sequence obtained for the reaction rate was amoxicillin > naproxen >> hydrochlorotiazide ≈ phenacetin ≈ metoprolol. The proposal of a kinetic mechanism, which specifies the dissociation of bromine and each pharmaceutical according to their pKa values and the pH allowed the determination of the intrinsic rate constants for every elementary reaction. The influence of the main operating conditions (pH, initial bromine dose, and the water matrix) on the degradation of pharmaceuticals was established. In addition, the presence of bromide in chlorination experiments was investigated. The presence of bromide in wastewaters and drinking waters in the range of 10 to several hundred μg L-1 accelerated slightly the oxidation of the selected pharmaceuticals during chorine disinfection.

Adsorption of Copper by using Microwave Incinerated Rice Husk Ash (MIRHA)

Many non-conventional adsorbent have been studied as economic alternative to commercial activated carbon and mostly agricultural waste have been introduced such as rubber leaf powder and hazelnut shell. Microwave Incinerated Rice Husk Ash (MIRHA), produced from the rice husk is one of the low-cost materials that were used as adsorbent of heavy metal. The aim of this research was to study the feasibility of using MIRHA500 and MIRHA800 as adsorbent for the removal of Cu(II) metal ions from aqueous solutions by the batch studies. The adsorption of Cu(II) into MIRHA500 and MIRH800 favors Fruendlich isotherm and imply pseudo – kinetic second order which applied chemisorptions

Biomethanation of Palm Oil Mill Effluent (POME) by Membrane Anaerobic System (MAS) using POME as a Substrate

The direct discharge of palm oil mill effluent (POME) wastewater causes serious environmental pollution due to its high chemical oxygen demand (COD) and biochemical oxygen demand (BOD). Traditional ways for POME treatment have both economical and environmental disadvantages. In this study, a membrane anaerobic system (MAS) was used as an alternative, cost effective method for treating POME. Six steady states were attained as a part of a kinetic study that considered concentration ranges of 8,220 to 15,400 mg/l for mixed liquor suspended solids (MLSS) and 6,329 to 13,244 mg/l for mixed liquor volatile suspended solids (MLVSS). Kinetic equations from Monod, Contois and Chen & Hashimoto were employed to describe the kinetics of POME treatment at organic loading rates ranging from 2 to 13 kg COD/m3/d. throughout the experiment, the removal efficiency of COD was from 94.8 to 96.5% with hydraulic retention time, HRT from 400.6 to 5.7 days. The growth yield coefficient, Y was found to be 0.62gVSS/g COD the specific microorganism decay rate was 0.21 d-1 and the methane gas yield production rate was between 0.25 l/g COD/d and 0.58 l/g COD/d. Steady state influent COD concentrations increased from 18,302 mg/l in the first steady state to 43,500 mg/l in the sixth steady state. The minimum solids retention time, which was obtained from the three kinetic models ranged from 5 to 12.3 days. The k values were in the range of 0.35 – 0.519 g COD/ g VSS • d and values were between 0.26 and 0.379 d-1. The solids retention time (SRT) decreased from 800 days to 11.6 days. The complete treatment reduced the COD content to 2279 mg/l equivalent to a reduction of 94.8% reduction from the original.

Nitrogen Removal in a High-efficiency Denitrification/Oxic Filter treatment System for Advanced Treatment of Municipal Wastewater

Biological treatment of secondary effluent wastewater by two combined denitrification/oxic filtration systems packed with Lock type(denitrification filter) and ceramic ball (oxic filter) has been studied for 5months. Two phases of operating conditions were carried out with an influent nitrate and ammonia concentrations varied from 5.8 to 11.7mg/L and 5.4 to 12.4mg/L,respectively. Denitrification/oxic filter treatment system were operated under an EBCT (Empty Bed Contact Time) of 4h at system recirculation ratio in the range from 0 to 300% (Linear Velocity increased 19.5m/d to 78m/d). The system efficiency of denitrification , nitrification over 95% respectively. Total nitrogen and COD removal range from 54.6%(recirculation 0%) to 92.3%(recirculation 300%) and 10% to 62.5%, respectively.

Implementation of Sprite Animation for Multimedia Application

Animation is simply defined as the sequencing of a series of static images to generate the illusion of movement. Most people believe that actual drawings or creation of the individual images is the animation, when in actuality it is the arrangement of those static images that conveys the motion. To become an animator, it is often assumed that needed the ability to quickly design masterpiece after masterpiece. Although some semblance of artistic skill is a necessity for the job, the real key to becoming a great animator is in the comprehension of timing. This paper will use a combination of sprite animation, frame animation, and some other techniques to cause a group of multi-colored static images to slither around in the bounded area. In addition to slithering, the images will also change the color of different parts of their body, much like the real world creatures that have this amazing ability to change the colors on their bodies do. This paper was implemented by using Java 2 Standard Edition (J2SE). It is both time-consuming and expensive to create animations, regardless if they are created by hand or by using motion-capture equipment. If the animators could reuse old animations and even blend different animations together, a lot of work would be saved in the process. The main objective of this paper is to examine a method for blending several animations together in real time. This paper presents and analyses a solution using Weighted Skeleton Animation (WSA) resulting in limited CPU time and memory waste as well as saving time for the animators. The idea presented is described in detail and implemented. In this paper, text animation, vertex animation, sprite part animation and whole sprite animation were tested. In this research paper, the resolution, smoothness and movement of animated images will be carried out from the parameters, which will be obtained from the experimental research of implementing this paper.

Evaluation of the Magnesium Wastes with Boron Oxide in Magnesium Borate Synthesis

Magnesium wastes and scraps, one of the metal wastes, are produced by many industrial activities, all over the world. Their growing size is becoming a future problem for the world. In this study, the use of magnesium wastes as a raw material in the production of the magnesium borate hydrates are aimed. The method used in the experiments is hydrothermal synthesis. The conditions are set to, waste magnesium to B2O3, 1:3 as a molar ratio. Four different reaction times are studied which are 30, 60, 120 and 240 minutes. For the identification analyses X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) and Raman spectroscopy techniques are used. As a result at all the reaction times magnesium borate hydrates are synthesized and the most crystalline forms are obtained at a reaction time of 120 minutes. The overall yields of the production are found between the values of 65-80 %.

Optimum Working Fluid Selection for Automotive Cogeneration System

A co-generation system in automobile can improve thermal efficiency of vehicle in some degree. The waste heat from the engine exhaust and coolant is still attractive energy source that reaches around 60% of the total energy converted from fuel. To maximize the effectiveness of heat exchangers for recovering the waste heat, it is vital to select the most suitable working fluid for the system, not to mention that it is important to find the optimum design for the heat exchangers. The design of heat exchanger is out of scoop of this study; rather, the main focus has been on the right selection of working fluid for the co-generation system. Simulation study was carried out to find the most suitable working fluid that can allow the system to achieve the optimum efficiency in terms of the heat recovery rate and thermal efficiency.

Influence of IMV on Space Station

To study the impact of the inter-module ventilation (IMV) on the space station, the Computational Fluid Dynamic (CFD) model under the influence of IMV, the mathematical model, boundary conditions and calculation method are established and determined to analyze the influence of IMV on cabin air flow characteristics and velocity distribution firstly; and then an integrated overall thermal mathematical model of the space station is used to consider the impact of IMV on thermal management. The results show that: the IMV has a significant influence on the cabin air flow, the flowrate of IMV within a certain range can effectively improve the air velocity distribution in cabin, if too much may lead to its deterioration; IMV can affect the heat deployment of the different modules in space station, thus affecting its thermal management, the use of IMV can effectively maintain the temperature levels of the different modules and help the space station to dissipate the waste heat.

Effect of Temperature on Specific Retention Volumes of Selected Volatile Organic Compounds Using the Gas - Liquid Chromatographic Technique Revisited

This paper is a continuation of our interest in the influence of temperature on specific retention volumes and the resulting infinite dilution activity coefficients. This has a direct effect in the design of absorption and stripping columns for the abatement of volatile organic compounds. The interaction of 13 volatile organic compounds (VOCs) with polydimethylsiloxane (PDMS) at varying temperatures was studied by gas liquid chromatography (GLC). Infinite dilution activity coefficients and specific retention volumes obtained in this study were found to be in agreement with those obtained from static headspace and group contribution methods by the authors as well as literature values for similar systems. Temperature variation also allows for transport calculations for different seasons. The results of this work confirm that PDMS is well suited for the scrubbing of VOCs from waste gas streams. Plots of specific retention volumes against temperature gave linear van-t Hoff plots.

Recovery of Copper and DCA from Simulated Micellar Enhanced Ultrafiltration (MEUF)Waste Stream

Simultaneous recovery of copper and DCA from simulated MEUF concentrated stream was investigated. Effects of surfactant (DCA) and metal (copper) concentrations, surfactant to metal molar ratio (S/M ratio), electroplating voltage, EDTA concentration, solution pH, and salt concentration on metal recovery and current efficiency were studied. Electric voltage of -0.5 V was shown to be optimum operation condition in terms of Cu recovery, current efficiency, and surfactant recovery. Increasing Cu recovery and current efficiency were observed with increases of Cu concentration while keeping concentration of DCA constant. However, increasing both Cu and DCA concentration while keeping S/M ratio constant at 2.5 showed detrimental effect on Cu recovery at DCA concentration higher than 15 mM. Cu recovery decreases with increasing pH while current efficiency showed an opposite trend. It is believed that conductivity is the main cause for discrepancy of Cu recovery and current efficiency observed at different pH. Finally, it was shown that EDTA had adverse effect on both Cu recovery and current efficiency while addition of NaCl salt had negative impact on current efficiency at concentration higher than 8000 mg/L.