Methodology of Personalizing Interior Spaces in Public Libraries

Creating public spaces which are tailored for the specific demands of the individuals is one of the challenges for the contemporary interior designers. Improving the general knowledge as well as providing a forum for all walks of life to exploit is one of the objectives of a public library. In this regard, interior design in consistent with the demands of the individuals is of paramount importance. Seemingly, study spaces, in particular, those in close relation to the personalized sector, have proven to be challenging, according to the literature. To address this challenge, attributes of individuals, namely, perception of people from public spaces and their interactions with the so-called spaces, should be analyzed to provide interior designers with something to work on. This paper follows the analytic-descriptive research methodology by outlining case study libraries which have personalized public libraries with the investigation of the type of personalization as its primary objective and (I) recognition of physical schedule and the know-how of the spatial connection in indoor design of a library and (II) analysis of each personalized space in relation to other spaces of the library as its secondary objectives. The significance of the current research lies in the concept of personalization as one of the most recent methods of attracting people to libraries. Previous research exists in this regard, but the lack of data concerning personalization makes this topic worth investigating. Hence, this study aims to put forward approaches through real-case studies for the designers to deal with this concept.

A Comprehensive Survey on Machine Learning Techniques and User Authentication Approaches for Credit Card Fraud Detection

With the increase of credit card usage, the volume of credit card misuse also has significantly increased, which may cause appreciable financial losses for both credit card holders and financial organizations issuing credit cards. As a result, financial organizations are working hard on developing and deploying credit card fraud detection methods, in order to adapt to ever-evolving, increasingly sophisticated defrauding strategies and identifying illicit transactions as quickly as possible to protect themselves and their customers. Compounding on the complex nature of such adverse strategies, credit card fraudulent activities are rare events compared to the number of legitimate transactions. Hence, the challenge to develop fraud detection that are accurate and efficient is substantially intensified and, as a consequence, credit card fraud detection has lately become a very active area of research. In this work, we provide a survey of current techniques most relevant to the problem of credit card fraud detection. We carry out our survey in two main parts. In the first part, we focus on studies utilizing classical machine learning models, which mostly employ traditional transnational features to make fraud predictions. These models typically rely on some static physical characteristics, such as what the user knows (knowledge-based method), or what he/she has access to (object-based method). In the second part of our survey, we review more advanced techniques of user authentication, which use behavioral biometrics to identify an individual based on his/her unique behavior while he/she is interacting with his/her electronic devices. These approaches rely on how people behave (instead of what they do), which cannot be easily forged. By providing an overview of current approaches and the results reported in the literature, this survey aims to drive the future research agenda for the community in order to develop more accurate, reliable and scalable models of credit card fraud detection.

Strongly Coupled Finite Element Formulation of Electromechanical Systems with Integrated Mesh Morphing using Radial Basis Functions

The paper introduces a method to efficiently simulate nonlinear changing electrostatic fields occurring in micro-electromechanical systems (MEMS). Large deflections of the capacitor electrodes usually introduce nonlinear electromechanical forces on the mechanical system. Traditional finite element methods require a time-consuming remeshing process to capture exact results for this physical domain interaction. In order to accelerate the simulation process and eliminate the remeshing process, a formulation of a strongly coupled electromechanical transducer element will be introduced which uses a combination of finite-element with an advanced mesh morphing technique using radial basis functions (RBF). The RBF allows large geometrical changes of the electric field domain while retain high element quality of the deformed mesh. Coupling effects between mechanical and electrical domains are directly included within the element formulation. Fringing field effects are described accurate by using traditional arbitrary shape functions.

Physics of Decision for Polling Place Management: A Case Study from the 2020 USA Presidential Election

In the context of the global pandemic, the practical management of the 2020 presidential election in the USA was a strong concern. To anticipate and prepare for this election accurately, one of the main challenges was to confront: (i) forecasts of voter turnout, (ii) capacities of the facilities and, (iii) potential configuration options of resources. The approach chosen to conduct this anticipative study consists of collecting data about forecasts and using simulation models to work simultaneously on resource allocation and facility configuration of polling places in Fulton County, Georgia’s largest county. This article presents the results of the simulations of such places facing pre-identified potential risks. These results are oriented towards the efficiency of these places according to different criteria (health, trust, comfort). Then a dynamic framework is introduced to describe risks as physical forces perturbing the efficiency of the observed system. Finally, the main benefits and contributions resulting from this simulation campaign are presented.

Educational Experiences in Engineering in the COVID-19 Era and Their Comparative Analysis: Spain, March-June 2020

In March 2020, in Spain, a sanitary and unexpected crisis caused by COVID-19 was declared. All of a sudden, all degrees, classes and evaluation tests and projects had to be transformed into online activities. However, the chaotic situation generated by a complex operation like that, executed without any well-established procedure, led to very different experiences and, finally, results. In this paper, we are describing three experiences in two different Universities in Madrid. On the one hand, the Technical University of Madrid, a public university with little experience in online education was considered. On the other hand, Alfonso X el Sabio University, a private university with more than five years of experience in online teaching was involved. All analyzed subjects were related to computer engineering. Professors and students answered a survey and personal interviews were also carried out. Besides, the professors’ workload and the students’ academic results were also compared. From the comparative analysis of all these experiences, we are extracting the most successful strategies, methodologies, and activities. The recommendations in this paper will be useful for courses during the next months when the sanitary situation is still affecting an educational organization. While, at the same time, they will be considered as input for the upcoming digitalization process of higher education.

On the Algorithmic Iterative Solutions of Conjugate Gradient, Gauss-Seidel and Jacobi Methods for Solving Systems of Linear Equations

In this paper, efforts were made to examine and compare the algorithmic iterative solutions of conjugate gradient method as against other methods such as Gauss-Seidel and Jacobi approaches for solving systems of linear equations of the form Ax = b, where A is a real n x n symmetric and positive definite matrix. We performed algorithmic iterative steps and obtained analytical solutions of a typical 3 x 3 symmetric and positive definite matrix using the three methods described in this paper (Gauss-Seidel, Jacobi and Conjugate Gradient methods) respectively. From the results obtained, we discovered that the Conjugate Gradient method converges faster to exact solutions in fewer iterative steps than the two other methods which took much iteration, much time and kept tending to the exact solutions.

Adaptive Kalman Filter for Noise Estimation and Identification with Bayesian Approach

Bayesian approach can be used for parameter identification and extraction in state space models and its ability for analyzing sequence of data in dynamical system is proved in different literatures. In this paper, adaptive Kalman filter with Bayesian approach for identification of variances in measurement parameter noise is developed. Next, it is applied for estimation of the dynamical state and measurement data in discrete linear dynamical system. This algorithm at each step time estimates noise variance in measurement noise and state of system with Kalman filter. Next, approximation is designed at each step separately and consequently sufficient statistics of the state and noise variances are computed with a fixed-point iteration of an adaptive Kalman filter. Different simulations are applied for showing the influence of noise variance in measurement data on algorithm. Firstly, the effect of noise variance and its distribution on detection and identification performance is simulated in Kalman filter without Bayesian formulation. Then, simulation is applied to adaptive Kalman filter with the ability of noise variance tracking in measurement data. In these simulations, the influence of noise distribution of measurement data in each step is estimated, and true variance of data is obtained by algorithm and is compared in different scenarios. Afterwards, one typical modeling of nonlinear state space model with inducing noise measurement is simulated by this approach. Finally, the performance and the important limitations of this algorithm in these simulations are explained. 

Design and Construction of an Impulse Current Generator for Lightning Strike Experiments

There has been a rising trend in using impulse current generators to investigate the lightning strike protection of materials including aluminum and composites in structures such as wind turbine blade and aircraft body. The focus of this research is to present an impulse current generator built in the High Voltage Lab at Mississippi State University. The generator is capable of producing component A and D of the natural lightning discharges in accordance with the Society of Automotive Engineers (SAE) standard, which is widely used in the aerospace industry. The generator can supply lightning impulse energy up to 400 kJ with the capability of producing impulse currents with magnitudes greater than 200 kA. The electrical circuit and physical components of an improved impulse current generator are described and several lightning strike waveforms with different amplitudes is presented for comparing with the standard waveform. The results of this study contribute to the fundamental understanding the functionality of the impulse current generators and present an impulse current generator developed at the High Voltage Lab of Mississippi State University.

Psychodidactic Strategies to Facilitate the Flow of Logical Thinking in the Preparation of Academic Documents

The preparation of academic documents, such as thesis, articles and research projects, is one of the requirements of the higher educational level. These documents demand the implementation of logical argumentative thinking which is experienced and executed with difficulty. To mitigate the effect of these difficulties we designed a thesis seminar, with which we have seven years of experience. It is taught in a graduate program in Psychology at the National Autonomous University of Mexico. In this seminar we use the Toulmin model as a mental heuristic and for the application of a set of psychodidactic strategies that facilitate the elaboration of the plot and culmination of the thesis. The efficiency in obtaining the degree in the groups exposed to the seminar has increased by 94% compared to the 10% that existed in the generations that were not exposed to the seminar. In this article we will emphasize the psychodidactic strategies used. The Toulmin model alone does not guarantee the success achieved. A set of actions of a psychological nature (almost psychotherapeutic) and didactics of the teacher also seem to contribute. These are actions that derive from an understanding of the psychological, epistemological and ontogenetic obstacles and the most frequent errors in which thought tends to fall when it is demanded a logical course. We have grouped the strategies into three groups: 1) strategies to facilitate logical thinking, 2) strategies to strengthen the scientific self and 3) strategies to facilitate the act of writing the text. In this work we delve into each of them.

A Commercial Building Plug Load Management System That Uses Internet of Things Technology to Automatically Identify Plugged-In Devices and Their Locations

Plug and process loads (PPLs) account for a large portion of U.S. commercial building energy use. There is a huge potential to reduce whole building consumption by targeting PPLs for energy savings measures or implementing some form of plug load management (PLM). Despite this potential, there has yet to be a widely adopted commercial PLM technology. This paper describes the Automatic Type and Location Identification System (ATLIS), a PLM system framework with automatic and dynamic load detection (ADLD). ADLD gives PLM systems the ability to automatically identify devices as they are plugged into the outlets of a building. The ATLIS framework takes advantage of smart, connected devices to identify device locations in a building, meter and control their power, and communicate this information to a central database. ATLIS includes five primary capabilities: location identification, communication, control, energy metering, and data storage. A laboratory proof of concept (PoC) demonstrated all but the energy metering capability, and these capabilities were validated using a series of system tests. The PoC was able to identify when a device was plugged into an outlet and the location of the device in the building. When a device was moved, the PoC’s dashboard and database were automatically updated with the new location. The PoC implemented controls to devices from the system dashboard so that devices maintained correct schedules regardless of where they were plugged in within the building. ATLIS’s primary technology application is improved PLM, but other applications include asset management, energy audits, and interoperability for grid-interactive efficient buildings. An ATLIS-based system could also be used to direct power to critical devices, such as ventilators, during a brownout or blackout. Such a framework is an opportunity to make PLM more widespread and reduce the amount of energy consumed by PPLs in current and future commercial buildings.

An Overview of Technology Availability to Support Remote Decentralized Clinical Trials

Developing new medicine and health solutions and improving patient health currently rely on the successful execution of clinical trials, which generate relevant safety and efficacy data. For their success, recruitment and retention of participants are some of the most challenging aspects of protocol adherence. Main barriers include: i) lack of awareness of clinical trials; ii) long distance from the clinical site; iii) the burden on participants, including the duration and number of clinical visits, and iv) high dropout rate. Most of these aspects could be addressed with a new paradigm, namely the Remote Decentralized Clinical Trials (RDCTs). Furthermore, the COVID-19 pandemic has highlighted additional advantages and challenges for RDCTs in practice, allowing participants to join trials from home and not depending on site visits, etc. Nevertheless, RDCTs should follow the process and the quality assurance of conventional clinical trials, which involve several processes. For each part of the trial, the Building Blocks, existing software and technologies were assessed through a systematic search. The technology needed to perform RDCTs is widely available and validated but is yet segmented and developed in silos, as different software solutions address different parts of the trial and at various levels. The current paper is analyzing the availability of technology to perform RDCTs, identifying gaps and providing an overview of Basic Building Blocks and functionalities that need to be covered to support the described processes.

Energy Management System with Temperature Rise Prevention on Hybrid Ships

Marine shipping has now become one of the major worldwide contributors to pollution and greenhouse gas emissions. Hybrid ships technology based on multiple energy sources has taken a great scope of research to get rid of ship emissions and cut down fuel expenses. Insufficiency between power generated and the demand load to withstand the transient behavior on ships during severe climate conditions will lead to a blackout. Thus, an efficient energy management system (EMS) is a mandatory scope for achieving higher system efficiency while enhancing the lifetime of the onboard storage systems is another salient EMS scope. Considering energy storage system conditions, both the battery state of charge (SOC) and temperature represent important parameters to prevent any malfunction of the storage system that eventually degrades the whole system. In this paper, a two battery packs ratio fuzzy logic control model is proposed. The overall aim is to control the charging/discharging current while including both the battery SOC and temperature in the energy management system. The full designs of the proposed controllers are described and simulated using Matlab. The results prove the successfulness of the proposed controller in stabilizing the system voltage during both loading and unloading while keeping the energy storage system in a healthy condition.

Software Product Quality Evaluation Model with Multiple Criteria Decision Making Analysis

This paper presents a software product quality evaluation model based on the ISO/IEC 25010 quality model. The evaluation characteristics and sub characteristics were identified from the ISO/IEC 25010 quality model. The multidimensional structure of the quality model is based on characteristics such as functional suitability, performance efficiency, compatibility, usability, reliability, security, maintainability, and portability, and associated sub characteristics. Random numbers are generated to establish the decision maker’s importance weights for each sub characteristics. Also, random numbers are generated to establish the decision matrix of the decision maker’s final scores for each software product against each sub characteristics. Thus, objective criteria importance weights and index scores for datasets were obtained from the random numbers. In the proposed model, five different software product quality evaluation datasets under three different weight vectors were applied to multiple criteria decision analysis method, preference analysis for reference ideal solution (PARIS) for comparison, and sensitivity analysis procedure. This study contributes to provide a better understanding of the application of MCDMA methods and ISO/IEC 25010 quality model guidelines in software product quality evaluation process.

Sustainable Balanced Scorecard for Kaizen Evaluation: Comparative Study between Egypt and Japan

Continuous improvement activities are becoming a key organizational success factor; those improvement activities include but are not limited to kaizen, six sigma, lean production, and continuous improvement projects. Kaizen is a Japanese philosophy of continuous improvement by making small incremental changes to improve an organization’s performance, reduce costs, reduce delay time, reduce waste in production, etc. This research aims at proposing a measuring system for kaizen activities from a sustainable balanced scorecard perspective. A survey was developed and disseminated among kaizen experts in both Egypt and Japan with the purpose of allocating key performance indicators for both kaizen process (critical success factors) and result (kaizen benefits) into the five sustainable balanced scorecard perspectives. This research contributes to the extant literature by presenting a kaizen measurement of both kaizen process and results that will illuminate the benefits of using kaizen. Also, the presented measurement can help in the sustainability of kaizen implementation across various sectors and industries. Thus, grasping the full benefits of kaizen implementation will contribute to the spread of kaizen understanding and practice. Also, this research provides insights on the social and cultural differences that would influence the kaizen success. Determining the combination of the proper kaizen measures could be used by any industry, whether service or manufacturing for better kaizen activities measurement. The comparison between Japanese implementation of kaizen, as the pioneers of continuous improvement, and Egyptian implementation will help recommending better practices of kaizen in Egypt and contributing to the 2030 sustainable development goals. The study results reveal that there is no significant difference in allocating kaizen benefits between Egypt and Japan. However, with regard to the critical success factors some differences appeared reflecting the social differences and understanding between both countries, a single integrated measurement was reached between the Egyptian and Japanese allocation highlighting the Japanese experts’ opinion as the ultimate criterion for selection.

Method for Tuning Level Control Loops Based on Internal Model Control and Closed Loop Step Test Data

This paper describes a two-stage methodology derived from IMC (Internal Model Control) for tuning a PID (Proportional-Integral-Derivative) controller for levels or other integrating processes in an industrial environment. Focus is ease of use and implementation speed which are critical for an industrial application. Tuning can be done with minimum effort and without the need of time-consuming open-loop step tests on the plant. The first stage of the method applies to levels only: the vessel residence time is calculated from equipment dimensions and used to derive a set of preliminary PI (Proportional-Integral) settings with IMC. The second stage, re-tuning in closed-loop, applies to levels as well as other integrating processes: a tuning correction mechanism has been developed based on a series of closed-loop simulations with model errors. The tuning correction is done from a simple closed-loop step test and application of a generic correlation between observed overshoot and integral time correction. A spin-off of the method is that an estimate of the vessel residence time (levels) or open-loop process gain (other integrating process) is obtained from the closed-loop data.

Effect of Type of Pile and Its Installation Method on Pile Bearing Capacity by Physical Modeling in Frustum Confining Vessel

Various factors such as the method of installation, the pile type, the pile material and the pile shape, can affect the final bearing capacity of a pile executed in the soil; among them, the method of installation is of special importance. The physical modeling is among the best options in the laboratory study of the piles behavior. Therefore, the current paper first presents and reviews the frustum confining vessel (FCV) as a suitable tool for physical modeling of deep foundations. Then, by describing the loading tests of two open-ended and closed-end steel piles, each of which has been performed in two methods, “with displacement" and "without displacement", the effect of end conditions and installation method on the final bearing capacity of the pile is investigated. The soil used in the current paper is silty sand of Firuzkuh, Iran. The results of the experiments show that in general the without displacement installation method has a larger bearing capacity in both piles, and in a specific method of installation the closed ended pile shows a slightly higher bearing capacity.

Incorporating Lexical-Semantic Knowledge into Convolutional Neural Network Framework for Pediatric Disease Diagnosis

The utilization of electronic medical record (EMR) data to establish the disease diagnosis model has become an important research content of biomedical informatics. Deep learning can automatically extract features from the massive data, which brings about breakthroughs in the study of EMR data. The challenge is that deep learning lacks semantic knowledge, which leads to impracticability in medical science. This research proposes a method of incorporating lexical-semantic knowledge from abundant entities into a convolutional neural network (CNN) framework for pediatric disease diagnosis. Firstly, medical terms are vectorized into Lexical Semantic Vectors (LSV), which are concatenated with the embedded word vectors of word2vec to enrich the feature representation. Secondly, the semantic distribution of medical terms serves as Semantic Decision Guide (SDG) for the optimization of deep learning models. The study evaluates the performance of LSV-SDG-CNN model on four kinds of Chinese EMR datasets. Additionally, CNN, LSV-CNN, and SDG-CNN are designed as baseline models for comparison. The experimental results show that LSV-SDG-CNN model outperforms baseline models on four kinds of Chinese EMR datasets. The best configuration of the model yielded an F1 score of 86.20%. The results clearly demonstrate that CNN has been effectively guided and optimized by lexical-semantic knowledge, and LSV-SDG-CNN model improves the disease classification accuracy with a clear margin.

A 3D Numerical Environmental Modeling Approach for Assessing Transport of Spilled Oil in Porous Beach Conditions under a Meso-Scale Tank Design

Shorelines are vulnerable to significant environmental impacts from oil spills. Stranded oil can cause potential short- to long-term detrimental effects along beaches that include injuries to ecosystem, socio-economic and cultural resources. In this study, a three-dimensional (3D) numerical modeling approach is developed to evaluate the fate and transport of spilled oil for hypothetical oiled shoreline cases under various combinations of beach geomorphology and environmental conditions. The developed model estimates the spatial and temporal distribution of spilled oil for the various test conditions, using the finite volume method and considering the physical transport (dispersion and advection), sinks, and sorption processes. The model includes a user-friendly interface for data input on variables such as beach properties, environmental conditions, and physical-chemical properties of spilled oil. An experimental meso-scale tank design was used to test the developed model for dissolved petroleum hydrocarbon within shorelines. The simulated results for effects of different sediment substrates, oil types, and shoreline features for the transport of spilled oil are comparable to that obtained with a commercially available model. Results show that the properties of substrates and the oil removal by shoreline effects have significant impacts on oil transport in the beach area. Sensitivity analysis, through the application of the one-step-at-a-time method (OAT), for the 3D model identified hydraulic conductivity as the most sensitive parameter. The 3D numerical model allows users to examine the behavior of oil on and within beaches, assess potential environmental impacts, and provide technical support for decisions related to shoreline clean-up operations.

Analysing the Renewable Energy Integration Paradigm in the Post-COVID-19 Era: An Examination of the Upcoming Energy Law of China

China’s declared transformation towards a ‘new electricity system dominated by renewable energy’ requires a cleaner electricity consumption mix with high shares of renewable energy sourced-electricity (RES-E). Unfortunately, integration of RES-E into Chinese electricity markets remains a problem pending more robust legal support, evidenced by the curtailment of wind and solar power due to integration constraints. The upcoming Energy Law of the PRC (Energy Law) is expected to provide such long-awaiting support and coordinate the existing diverse sector-specific laws to deal with the weak implementation that dampening the delivery of their desired regulatory effects. However, in the shadow of the COVID-19 crisis, it remains uncertain how this new Energy Law brings synergies to RES-E integration, mindful of the significant impacts of the pandemic. Through the theoretical lens of the interplay between China’s electricity market reform and legislative development, this paper investigates whether there is a paradigm shift in Energy Law regarding renewable energy integration compared with the existing sector-specific energy laws. It examines the 2020 Draft for Comments on the Energy Law and analyses its relationship with sector-specific energy laws focusing on RES-E integration. The comparison is drawn upon five critical aspects of the RES-E integration issue, including the status of renewables, marketisation, incentive schemes, consumption mechanisms, access to power grids and dispatching. The analysis shows that it is reasonable to expect a more open and well-organised electricity market, enabling the absorption of high shares of RES-E. The present paper concludes that a period of prosperous development of RES-E in the post-COVID-19 era can be anticipated with the legal support by the upcoming Energy Law. It contributes to understanding the signals China is sending regarding the transition towards a cleaner energy future.

Double Clustering as an Unsupervised Approach for Order Picking of Distributed Warehouses

Planning the order picking lists for warehouses to achieve some operational performances is a significant challenge when the costs associated with logistics are relatively high, and it is especially important in e-commerce era. Nowadays, many order planning techniques employ supervised machine learning algorithms. However, to define features for supervised machine learning algorithms is not a simple task. Against this background, we consider whether unsupervised algorithms can enhance the planning of order-picking lists. A double zone picking approach, which is based on using clustering algorithms twice, is developed. A simplified example is given to demonstrate the merit of our approach.