Abstract: The gait pattern in people that present motor limitations foment the demand for auxiliary locomotion devices. These artifacts for movement assistance vary according to its shape, size and functional features, following the clinical applications desired. Among the ortheses of lower limbs, the ankle-foot orthesis aims to improve the ability to walk in people with different neuromuscular limitations, although they do not always answer patients' expectations for their aesthetic and functional characteristics. The purpose of this study is to explore the possibility of using new design in additive manufacturer to reproduce the shape and functional features of a ankle-foot orthesis in an efficient and modern way. Therefore, this work presents a study about the performance of the mechanical forces through the analysis of finite elements in an ankle-foot orthesis. It will be demonstrated a study of distribution of the stress on the orthopedic device in orthostatism and during the movement in the course of patient's walk.
Abstract: This paper addresses attention to a research regarding the design of a knee orthosis in a modular form used on children walking rehabilitation. This research is focused on the human lower limb kinematic analysis which will be used as input data on virtual simulations and prototype validation. From this analysis, important data will be obtained and used as input for virtual simulations of the knee modular orthosis. Thus, a knee orthosis concept was obtained and validated through virtual simulations by using MSC Adams software. Based on the obtained results, the modular orthosis prototype will be manufactured and presented in this article.
Abstract: The efficiency of the actuation system of exoskeletons
and active orthoses for lower limbs is a significant aspect of the
design of such devices because it affects their efficacy. The F-IVT is
an innovative actuation system to power artificial knee joint with
energy recovery capabilities. Its key and non-conventional elements
are a flywheel that acts as a mechanical energy storage system, and
an Infinitely Variable Transmission (IVT). The design of the F-IVT
can be optimized for a certain walking condition, resulting in a heavy
reduction of both the electric energy consumption and of the electric
peak power. In this work, by means of simulations of level ground
walking at different speeds, it is demonstrated that the F-IVT is still
an advantageous actuator which permits to save energy consumption
and to downsize the electric motor even when it does not work in
nominal conditions.