Joint Microstatistic Multiuser Detection and Cancellation of Nonlinear Distortion Effects for the Uplink of MC-CDMA Systems Using Golay Codes

The study in this paper underlines the importance of correct joint selection of the spreading codes for uplink of multicarrier code division multiple access (MC-CDMA) at the transmitter side and detector at the receiver side in the presence of nonlinear distortion due to high power amplifier (HPA). The bit error rate (BER) of system for different spreading sequences (Walsh code, Gold code, orthogonal Gold code, Golay code and Zadoff-Chu code) and different kinds of receivers (minimum mean-square error receiver (MMSE-MUD) and microstatistic multi-user receiver (MSF-MUD)) is compared by means of simulations for MC-CDMA transmission system. Finally, the results of analysis will show, that the application of MSF-MUD in combination with Golay codes can outperform significantly the other tested spreading codes and receivers for all mostly used models of HPA.

Numerical Solution of a Laminar Viscous Flow Boundary Layer Equation Using Uniform Haar Wavelet Quasi-linearization Method

In this paper, we have proposed a Haar wavelet quasilinearization method to solve the well known Blasius equation. The method is based on the uniform Haar wavelet operational matrix defined over the interval [0, 1]. In this method, we have proposed the transformation for converting the problem on a fixed computational domain. The Blasius equation arises in the various boundary layer problems of hydrodynamics and in fluid mechanics of laminar viscous flows. Quasi-linearization is iterative process but our proposed technique gives excellent numerical results with quasilinearization for solving nonlinear differential equations without any iteration on selecting collocation points by Haar wavelets. We have solved Blasius equation for 1≤α ≤ 2 and the numerical results are compared with the available results in literature. Finally, we conclude that proposed method is a promising tool for solving the well known nonlinear Blasius equation.

Identification of a PWA Model of a Batch Reactor for Model Predictive Control

The complex hybrid and nonlinear nature of many processes that are met in practice causes problems with both structure modelling and parameter identification; therefore, obtaining a model that is suitable for MPC is often a difficult task. The basic idea of this paper is to present an identification method for a piecewise affine (PWA) model based on a fuzzy clustering algorithm. First we introduce the PWA model. Next, we tackle the identification method. We treat the fuzzy clustering algorithm, deal with the projections of the fuzzy clusters into the input space of the PWA model and explain the estimation of the parameters of the PWA model by means of a modified least-squares method. Furthermore, we verify the usability of the proposed identification approach on a hybrid nonlinear batch reactor example. The result suggest that the batch reactor can be efficiently identified and thus formulated as a PWA model, which can eventually be used for model predictive control purposes.

Sway Reduction on Gantry Crane System using Delayed Feedback Signal and PD-type Fuzzy Logic Controller: A Comparative Assessment

This paper presents the use of anti-sway angle control approaches for a two-dimensional gantry crane with disturbances effect in the dynamic system. Delayed feedback signal (DFS) and proportional-derivative (PD)-type fuzzy logic controller are the techniques used in this investigation to actively control the sway angle of the rope of gantry crane system. A nonlinear overhead gantry crane system is considered and the dynamic model of the system is derived using the Euler-Lagrange formulation. A complete analysis of simulation results for each technique is presented in time domain and frequency domain respectively. Performances of both controllers are examined in terms of sway angle suppression and disturbances cancellation. Finally, a comparative assessment of the impact of each controller on the system performance is presented and discussed.

Short Time Identification of Feed Drive Systems using Nonlinear Least Squares Method

Design and modeling of nonlinear systems require the knowledge of all inside acting parameters and effects. An empirical alternative is to identify the system-s transfer function from input and output data as a black box model. This paper presents a procedure using least squares algorithm for the identification of a feed drive system coefficients in time domain using a reduced model based on windowed input and output data. The command and response of the axis are first measured in the first 4 ms, and then least squares are applied to predict the transfer function coefficients for this displacement segment. From the identified coefficients, the next command response segments are estimated. The obtained results reveal a considerable potential of least squares method to identify the system-s time-based coefficients and predict accurately the command response as compared to measurements.

Partial Stabilization of a Class of Nonlinear Systems Via Center Manifold Theory

This paper addresses the problem of the partial state feedback stabilization of a class of nonlinear systems. In order to stabilization this class systems, the especial place of this paper is to reverse designing the state feedback control law from the method of judging system stability with the center manifold theory. First of all, the center manifold theory is applied to discuss the stabilization sufficient condition and design the stabilizing state control laws for a class of nonlinear. Secondly, the problem of partial stabilization for a class of plane nonlinear system is discuss using the lyapunov second method and the center manifold theory. Thirdly, we investigate specially the problem of the stabilization for a class of homogenous plane nonlinear systems, a class of nonlinear with dual-zero eigenvalues and a class of nonlinear with zero-center using the method of lyapunov function with homogenous derivative, specifically. At the end of this paper, some examples and simulation results are given show that the approach of this paper to this class of nonlinear system is effective and convenient.

Periodic Oscillations in a Delay Population Model

In this paper, a nonlinear delay population model is investigated. Choosing the delay as a bifurcation parameter, we demonstrate that Hopf bifurcation will occur when the delay exceeds a critical value. Global existence of bifurcating periodic solutions is established. Numerical simulations supporting the theoretical findings are included.

Evolutionary of Prostate Cancer Stem Cells in Prostate Duct

A systems approach model for prostate cancer in prostate duct, as a sub-system of the organism is developed. It is accomplished in two steps. First this research work starts with a nonlinear system of coupled Fokker-Plank equations which models continuous process of the system like motion of cells. Then extended to PDEs that include discontinuous processes like cell mutations, proliferation and deaths. The discontinuous processes is modeled by using intensity poisson processes. The model incorporates the features of the prostate duct. The system of PDEs spatial coordinate is along the proximal distal axis. Its parameters depend on features of the prostate duct. The movement of cells is biased towards distal region and mutations of prostate cancer cells is localized in the proximal region. Numerical solutions of the full system of equations are provided, and are exhibit traveling wave fronts phenomena. This motivates the use of the standard transformation to derive a canonically related system of ODEs for traveling wave solutions. The results obtained show persistence of prostate cancer by showing that the non-negative cone for the traveling wave system is time invariant. The traveling waves have a unique global attractor is proved also. Biologically, the global attractor verifies that evolution of prostate cancer stem cells exhibit the avascular tumor growth. These numerical solutions show that altering prostate stem cell movement or mutation of prostate cancer cells lead to avascular tumor. Conclusion with comments on clinical implications of the model is discussed.

An Improved Learning Algorithm based on the Conjugate Gradient Method for Back Propagation Neural Networks

The conjugate gradient optimization algorithm usually used for nonlinear least squares is presented and is combined with the modified back propagation algorithm yielding a new fast training multilayer perceptron (MLP) algorithm (CGFR/AG). The approaches presented in the paper consist of three steps: (1) Modification on standard back propagation algorithm by introducing gain variation term of the activation function, (2) Calculating the gradient descent on error with respect to the weights and gains values and (3) the determination of the new search direction by exploiting the information calculated by gradient descent in step (2) as well as the previous search direction. The proposed method improved the training efficiency of back propagation algorithm by adaptively modifying the initial search direction. Performance of the proposed method is demonstrated by comparing to the conjugate gradient algorithm from neural network toolbox for the chosen benchmark. The results show that the number of iterations required by the proposed method to converge is less than 20% of what is required by the standard conjugate gradient and neural network toolbox algorithm.

Dispenser Longitudinal Movement ControlDesign Based on Auto - Disturbances –Rejection - Controller

Based on the feature of model disturbances and uncertainty being compensated dynamically in auto – disturbances-rejection-controller (ADRC), a new method using ADRC is proposed for the decoupling control of dispenser longitudinal movement in big flight envelope. Developed from nonlinear model directly, ADRC is especially suitable for dynamic model that has big disturbances. Furthermore, without changing the structure and parameters of the controller in big flight envelope, this scheme can simplify the design of flight control system. The simulation results in big flight envelope show that the system achieves high dynamic performance, steady state performance and the controller has strong robustness.

Dynamic Response of Strain Rate Dependent Glass/Epoxy Composite Beams Using Finite Difference Method

This paper deals with a numerical analysis of the transient response of composite beams with strain rate dependent mechanical properties by use of a finite difference method. The equations of motion based on Timoshenko beam theory are derived. The geometric nonlinearity effects are taken into account with von Kármán large deflection theory. The finite difference method in conjunction with Newmark average acceleration method is applied to solve the differential equations. A modified progressive damage model which accounts for strain rate effects is developed based on the material property degradation rules and modified Hashin-type failure criteria and added to the finite difference model. The components of the model are implemented into a computer code in Mathematica 6. Glass/epoxy laminated composite beams with constant and strain rate dependent mechanical properties under dynamic load are analyzed. Effects of strain rate on dynamic response of the beam for various stacking sequences, load and boundary conditions are investigated.

Optimized Fuzzy Control by Particle Swarm Optimization Technique for Control of CSTR

Fuzzy logic control (FLC) systems have been tested in many technical and industrial applications as a useful modeling tool that can handle the uncertainties and nonlinearities of modern control systems. The main drawback of the FLC methodologies in the industrial environment is challenging for selecting the number of optimum tuning parameters. In this paper, a method has been proposed for finding the optimum membership functions of a fuzzy system using particle swarm optimization (PSO) algorithm. A synthetic algorithm combined from fuzzy logic control and PSO algorithm is used to design a controller for a continuous stirred tank reactor (CSTR) with the aim of achieving the accurate and acceptable desired results. To exhibit the effectiveness of proposed algorithm, it is used to optimize the Gaussian membership functions of the fuzzy model of a nonlinear CSTR system as a case study. It is clearly proved that the optimized membership functions (MFs) provided better performance than a fuzzy model for the same system, when the MFs were heuristically defined.

The Role of Velocity Map Quality in Estimation of Intravascular Pressure Distribution

Phase-Contrast MR imaging methods are widely used for measurement of blood flow velocity components. Also there are some other tools such as CT and Ultrasound for velocity map detection in intravascular studies. These data are used in deriving flow characteristics. Some clinical applications are investigated which use pressure distribution in diagnosis of intravascular disorders such as vascular stenosis. In this paper an approach to the problem of measurement of intravascular pressure field by using velocity field obtained from flow images is proposed. The method presented in this paper uses an algorithm to calculate nonlinear equations of Navier- Stokes, assuming blood as an incompressible and Newtonian fluid. Flow images usually suffer the lack of spatial resolution. Our attempt is to consider the effect of spatial resolution on the pressure distribution estimated from this method. In order to achieve this aim, velocity map of a numerical phantom is derived at six different spatial resolutions. To determine the effects of vascular stenoses on pressure distribution, a stenotic phantom geometry is considered. A comparison between the pressure distribution obtained from the phantom and the pressure resulted from the algorithm is presented. In this regard we also compared the effects of collocated and staggered computational grids on the pressure distribution resulted from this algorithm.

Robust H State-Feedback Control for Uncertain Fuzzy Markovian Jump Systems: LMI-Based Design

This paper investigates the problem of designing a robust state-feedback controller for a class of uncertain Markovian jump nonlinear systems that guarantees the L2-gain from an exogenous input to a regulated output is less than or equal to a prescribed value. First, we approximate this class of uncertain Markovian jump nonlinear systems by a class of uncertain Takagi-Sugeno fuzzy models with Markovian jumps. Then, based on an LMI approach, LMI-based sufficient conditions for the uncertain Markovian jump nonlinear systems to have an H performance are derived. An illustrative example is used to illustrate the effectiveness of the proposed design techniques.

Periodic Control of a Reverse Osmosis Water Desalination Unit

Enhancement of the performance of a reverse osmosis (RO) unit through periodic control is studied. The periodic control manipulates the feed pressure and flow rate of the RO unit. To ensure the periodic behavior of the inputs, the manipulated variables (MV) are transformed into the form of sinusoidal functions. In this case, the amplitude and period of the sinusoidal functions become the surrogate MV and are thus regulated via nonlinear model predictive control algorithm. The simulation results indicated that the control system can generate cyclic inputs necessary to enhance the closedloop performance in the sense of increasing the permeate production and lowering the salt concentration. The proposed control system can attain its objective with arbitrary set point for the controlled outputs. Successful results were also obtained in the presence of modeling errors.

New Exact Three-Wave Solutions for the (2+1)-Dimensional Asymmetric Nizhnik-Novikov-Veselov System

New exact three-wave solutions including periodic two-solitary solutions and doubly periodic solitary solutions for the (2+1)-dimensional asymmetric Nizhnik-Novikov- Veselov (ANNV) system are obtained using Hirota's bilinear form and generalized three-wave type of ansatz approach. It is shown that the generalized three-wave method, with the help of symbolic computation, provides an e¤ective and powerful mathematical tool for solving high dimensional nonlinear evolution equations in mathematical physics.

Steady-State Performance of a New Model for UPFC Applied to Multi-Machines System with Nonlinear Load

In this paper, a new developed construction model of the UPFC is proposed. The construction of this model consists of one shunt compensation block and two series compensation blocks. In this case, the UPFC with the new construction model will be investigated when it is installed in multi-machine systems with nonlinear load model. In addition, the steady–state performance of the new model operating as impedance compensation will be presented and compared with that obtained from the system without compensation.

Group Similarity Transformation of a Time Dependent Chemical Convective Process

The time dependent progress of a chemical reaction over a flat horizontal plate is here considered. The problem is solved through the group similarity transformation method which reduces the number of independent by one and leads to a set of nonlinear ordinary differential equation. The problem shows a singularity at the chemical reaction order n=1 and is analytically solved through the perturbation method. The behavior of the process is then numerically investigated for n≠1 and different Schmidt numbers. Graphical results for the velocity and concentration of chemicals based on the analytical and numerical solutions are presented and discussed.

Software Tools for System Identification and Control using Neural Networks in Process Engineering

Neural networks offer an alternative approach both for identification and control of nonlinear processes in process engineering. The lack of software tools for the design of controllers based on neural network models is particularly pronounced in this field. SIMULINK is properly a widely used graphical code development environment which allows system-level developers to perform rapid prototyping and testing. Such graphical based programming environment involves block-based code development and offers a more intuitive approach to modeling and control task in a great variety of engineering disciplines. In this paper a SIMULINK based Neural Tool has been developed for analysis and design of multivariable neural based control systems. This tool has been applied to the control of a high purity distillation column including non linear hydrodynamic effects. The proposed control scheme offers an optimal response for both theoretical and practical challenges posed in process control task, in particular when both, the quality improvement of distillation products and the operation efficiency in economical terms are considered.