Abstract: An attempt has been made to determine the strength
and impact properties of Cr-Mo steel weld and base materials by
varying the current during manual metal arc welding. Toughness over
a temperature range from -32 to 100°C of base, heat affected zone
(HAZ) and weld zones at three current settings are made. It is
observed that the deterioration in notch toughness at any zone with
the temperature decreases. The values of notch toughness for all
zones at -32°C are almost same for any current settings. The values
of notch toughness at HAZ area are higher than that of weld area due
to the coarsening of ferrite grain of HAZ occurs with higher heat
input. From microhardness and microstructure result, it can be
concluded that large inclusion content in weld deposit is the cause of
lower notch toughness value.
Abstract: Group-III nitride material as particularly AlxGa1-xN is
one of promising optoelectronic materials to require for shortwavelength
devices. To achieve the high-quality AlxGa1-xN films for
a high performance of such devices, AlN-nucleation layers are the
important factor. To improve the AlN-nucleation layers with a
variation of Ga-addition, XRD measurements were conducted to
analyze the crystalline quality of the subsequent Al0.1Ga0.9N with the
minimum ω-FWHMs of (0002) and (10-10) reflections of 425 arcsec
and 750 arcsec, respectively. SEM and AFM measurements were
performed to observe the surface morphology and TEM
measurements to identify the microstructures and orientations.
Results showed that the optimized Ga-atoms in the Al(Ga)Nnucleation
layers improved the surface diffusion to form moreuniform
crystallites in structure and size, better alignment of each
crystallite, and better homogeneity of island distribution. This, hence,
improves the orientation of epilayers on the Si-surface and finally
improves the crystalline quality and reduces the residual strain of
subsequent Al0.1Ga0.9N layers.
Abstract: To improve the material characteristics of single- and
poly-crystals of pure copper, the respective relationships between crystallographic orientations and microstructures, and the bending and mechanical properties were examined. And texture distribution is also
analyzed. A grain refinement procedure was performed to obtain a
grained structure. Furthermore, some analytical results related to
crystal direction maps, inverse pole figures, and textures were obtained from SEM-EBSD analyses. Results showed that these
grained metallic materials have peculiar springback characteristics with various bending angles.
Abstract: A concrete structure is designed and constructed for its
purpose of use, and is expected to maintain its function for the target
durable years from when it was planned. Nevertheless, as time elapses
the structure gradually deteriorates and then eventually degrades to the
point where the structure cannot exert the function for which it was
planned. The performance of concrete that is able to maintain the level
of the performance required over the designed period of use as it has
less deterioration caused by the elapse of time under the designed
condition is referred to as Durability. There are a number of causes of
durability degradation, but especially chloride damage, carbonation,
freeze-thaw, etc are the main causes. In this study, carbonation, one of
the main causes of deterioration of the durability of a concrete
structure, was investigated via a microstructure analysis technique.
The method for the measurement of carbonation was studied using the
existing indicator method, and the method of measuring the progress
of carbonation in a quantitative manner was simultaneously studied
using a FT-IR (Fourier-Transform Infrared) Spectrometer along with
the microstructure analysis technique.