Isolation and Identification of an Acetobacter Strain from Iranian White-Red Cherry with High Acetic Acid Productivity as a Potential Strain for Cherry Vinegar Production in Foodand Agriculture Biotechnology

According to FDA (Food and Drug Administration of the United States), vinegar is definedas a sour liquid containing at least 4 grams acetic acid in 100 cubic centimeter (4% solution of acetic acid) of solution that is produced from sugary materials by alcoholic fermentation. In the base of microbial starters, vinegars could be contained of more than 50 types of volatile and aromatic substances that responsible for their sweet taste and smelling. Recently the vinegar industry has a great proportion in agriculture, food and microbial biotechnology. The acetic acid bacteria are from the family Acetobacteraceae. Regarding to the latest version of Bergy-s Mannual of Systematic Bacteriology that has categorized bacteria in the base of their 16s RNA differences, the most important acetic acid genera are included Acetobacter (genus I), Gluconacetobacter (genus VIII) and Gluconobacter (genus IX). The genus Acetobacter that is primarily used in vinegar manufacturing plants is a gram negative, obligate aerobe coccus or rod shaped bacterium with the size 0.6 - 0.8 X 1.0 - 4.0 μm, nonmotile or motile with peritrichous flagella and catalase positive – oxidase negative biochemically. Some strains are overoxidizer that could convert acetic acid to carbon dioxide and water.In this research one Acetobacter native strain with high acetic acid productivity was isolated from Iranian white – red cherry. We used two specific culture media include Carr medium [yeast extract, 3%; ethanol, 2% (v/v); bromocresol green, 0.002%; agar, 2% and distilled water, 1000 ml], Frateur medium [yeast extract, 10 g/l; CaCO3, 20 g/l; ethanol, 20 g/l; agar, 20 g/l and distilled water, 1000 ml] and an industrial culture medium. In addition to high acetic acid production and high growth rate, this strain had a good tolerance against ethanol concentration that was examined using modified Carr media with 5%, 7% and 9% ethanol concentrations. While the industrial strains of acetic acid bacteria grow in the thermal range of 28 – 30 °C, this strain was adapted for growth in 34 – 36 °C after 96 hours incubation period. These dramatic characteristics suggest a potential biotechnological strain in production of cherry vinegar with a sweet smell and different nutritional properties in comparison to recent vinegar types. The lack of growth after 24, 48 and 72 hours incubation at 34 – 36 °C and the growth after 96 hours indicates a good and fast thermal flexibility of this strain as a significant characteristic of biotechnological and industrial strains.

Application of the Data Distribution Service for Flexible Manufacturing Automation

This paper discusses the applicability of the Data Distribution Service (DDS) for the development of automated and modular manufacturing systems which require a flexible and robust communication infrastructure. DDS is an emergent standard for datacentric publish/subscribe middleware systems that provides an infrastructure for platform-independent many-to-many communication. It particularly addresses the needs of real-time systems that require deterministic data transfer, have low memory footprints and high robustness requirements. After an overview of the standard, several aspects of DDS are related to current challenges for the development of modern manufacturing systems with distributed architectures. Finally, an example application is presented based on a modular active fixturing system to illustrate the described aspects.

Managing the Information System Life Cycle in Construction and Manufacturing

In this paper we present the information life cycle and analyze the importance of managing the corporate application portfolio across this life cycle. The approach presented here corresponds not just to the extension of the traditional information system development life cycle. This approach is based in the generic life cycle. In this paper it is proposed a model of an information system life cycle, supported in the assumption that a system has a limited life. But, this limited life may be extended. This model is also applied in several cases; being reported here two examples of the framework application in a construction enterprise and in a manufacturing enterprise.

Numerical Calculation of Coils Filled With Bianisotropic Media

Recently, bianisotropic media again received increasing importance in electromagnetic theory because of advances in material science which enable the manufacturing of complex bianisotropic materials. By using Maxwell's equations and corresponding boundary conditions, the electromagnetic field distribution in bianisotropic solenoid coils is determined and the influence of the bianisotropic behaviour of coil to the impedance and Q-factor is considered. Bianisotropic media are the largest class of linear media which is able to describe the macroscopic material properties of artificial dielectrics, artificial magnetics, artificial chiral materials, left-handed materials, metamaterials, and other composite materials. Several special cases of coils, filled with complex substance, have been analyzed. Results obtained by using the analytical approach are compared with values calculated by numerical methods, especially by our new hybrid EEM/BEM method and FEM.

Efficient Supplies to Assembly Areas from Storage Stages

Guaranteeing the availability of the required parts at the scheduled time represents a key logistical challenge. This is especially important when several parts are required together. This article describes a tool that supports the positioning in the area of conflict between low stock costs and a high service level for a consumer.

Estimation of Individual Power of Noise Sources Operating Simultaneously

Noise has adverse effect on human health and comfort. Noise not only cause hearing impairment, but it also acts as a causal factor for stress and raising systolic pressure. Additionally it can be a causal factor in work accidents, both by marking hazards and warning signals and by impeding concentration. Industry workers also suffer psychological and physical stress as well as hearing loss due to industrial noise. This paper proposes an approach to enable engineers to point out quantitatively the noisiest source for modification, while multiple machines are operating simultaneously. The model with the point source and spherical radiation in a free field was adopted to formulate the problem. The procedure works very well in ideal cases (point source and free field). However, most of the industrial noise problems are complicated by the fact that the noise is confined in a room. Reflections from the walls, floor, ceiling, and equipment in a room create a reverberant sound field that alters the sound wave characteristics from those for the free field. So the model was validated for relatively low absorption room at NIT Kurukshetra Central Workshop. The results of validation pointed out that the estimated sound power of noise sources under simultaneous conditions were on lower side, within the error limits 3.56 - 6.35 %. Thus suggesting the use of this methodology for practical implementation in industry. To demonstrate the application of the above analytical procedure for estimating the sound power of noise sources under simultaneous operating conditions, a manufacturing facility (Railway Workshop at Yamunanagar, India) having five sound sources (machines) on its workshop floor is considered in this study. The findings of the case study had identified the two most effective candidates (noise sources) for noise control in the Railway Workshop Yamunanagar, India. The study suggests that the modification in the design and/or replacement of these two identified noisiest sources (machine) would be necessary so as to achieve an effective reduction in noise levels. Further, the estimated data allows engineers to better understand the noise situations of the workplace and to revise the map when changes occur in noise level due to a workplace re-layout.

An Analysis of Activity-Based Costing in a Manufacturing System

Activity-Based Costing (ABC) represents an alternative paradigm to traditional cost accounting system and it often provides more accurate cost information for decision making such as product pricing, product mix, and make-orbuy decisions. ABC models the causal relationships between products and the resources used in their production and traces the cost of products according to the activities through the use of appropriate cost drivers. In this paper, the implementation of the ABC in a manufacturing system is analyzed and a comparison with the traditional cost based system in terms of the effects on the product costs are carried out to highlight the difference between two costing methodologies. By using this methodology, a valuable insight into the factors that cause the cost is provided, helping to better manage the activities of the company.

Improvement Plant Layout Using Systematic Layout Planning (SLP) for Increased Productivity

The objective of this research is to study plant layout of iron manufacturing based on the systematic layout planning pattern theory (SLP) for increased productivity. In this case study, amount of equipments and tools in iron production are studied. The detailed study of the plant layout such as operation process chart, flow of material and activity relationship chart has been investigated. The new plant layout has been designed and compared with the present plant layout. The SLP method showed that new plant layout significantly decrease the distance of material flow from billet cutting process until keeping in ware house.

Knowledge Acquisition, Absorptive Capacity, and Innovation Capability: An Empirical Study of Taiwan's Knowledge-Intensive Industries

This study investigates the roles of knowledge acquisition, absorptive capacity, and innovation capability in finance and manufacturing industries. With 362 valid questionnaires from manufactures and financial industries in Taiwan, we examine the relationships between absorptive capacity, knowledge acquisition and innovation capability using a structural equation model. The results indicate that absorptive capacity is the mediator between knowledge acquisition and innovation capability, and that knowledge acquisition has a positive effect on absorptive capacity.

Integration and Selectivity in Open Innovation:An Empirical Analysis in SMEs

The company-s ability to draw on a range of external sources to meet their needs for innovation, has been termed 'open innovation' (OI). Very few empirical analyses have been conducted on Small and Medium Enterprises (SMEs) to the extent that they describe and understand the characteristics and implications of this new paradigm. The study's objective is to identify and characterize different modes of OI, (considering innovation process phases and the variety and breadth of the collaboration), determinants, barriers and motivations in SMEs. Therefore a survey was carried out among Italian manufacturing firms and a database of 105 companies was obtained. With regard to data elaboration, a factorial and cluster analysis has been conducted and three different OI modes have emerged: selective low open, unselective open upstream, and mid- partners integrated open. The different behaviours of the three clusters in terms of determinants factors, performance, firm-s technology intensity, barriers and motivations have been analyzed and discussed.

Design of Modular Robotic Joints for Achieving Various Robot Configurations

This paper describes various stages of design and prototyping of a modular robot for use in various industrial applications. The major goal of current research has been to design and make different robotic joints at low cost capable of being assembled together in any given order for achieving various robot configurations. Five different types of joins were designed and manufactured where extensive research has been carried out on the design of each joint in order to achieve optimal strength, size, modularity, and price. This paper presents various stages of research and development undertaken to engineer these joints that include material selection, manufacturing, and strength analysis. The outcome of this research addresses the birth of a new generation of modular industrial robots with a wider range of applications and greater efficiency.

Development of a Model for the Comprehensive Analysis and Evaluation of Service Productivity

Although services play a crucial role in economy, service did not gain as much importance as productivity management in manufacturing. This paper presents key findings from literature and practice. Based on an initial definition of complex services, seven productivity concepts are briefly presented and assessed by relevant, complex service specific criteria. Following the findings a complex service productivity model is proposed. The novel model comprises of all specific dimensions of service provision from both, the provider-s as well as costumer-s perspective. A clear assignment of identified value drivers and relationships between them is presented. In order to verify the conceptual service productivity model a case study from a project engineering department of a chemical plant development and construction company is presented.

Precise Measurement of Displacement using Pixels

Manufacturing processes demand tight dimensional tolerances. The paper concerns a transducer for precise measurement of displacement, based on a camera containing a linescan chip. When tests were conducted using a track of black and white stripes with a 2mm pitch, errors in measuring on individual cycle amounted to 1.75%, suggesting that a precision of 35 microns is achievable.

Optimal Facility Layout Problem Solution Using Genetic Algorithm

Facility Layout Problem (FLP) is one of the essential problems of several types of manufacturing and service sector. It is an optimization problem on which the main objective is to obtain the efficient locations, arrangement and order of the facilities. In the literature, there are numerous facility layout problem research presented and have used meta-heuristic approaches to achieve optimal facility layout design. This paper presented genetic algorithm to solve facility layout problem; to minimize total cost function. The performance of the proposed approach was verified and compared using problems in the literature.

An Approach for Data Analysis, Evaluation and Correction: A Case Study from Man-Made River Project in Libya

The world-s largest Pre-stressed Concrete Cylinder Pipe (PCCP) water supply project had a series of pipe failures which occurred between 1999 and 2001. This has led the Man-Made River Authority (MMRA), the authority in charge of the implementation and operation of the project, to setup a rehabilitation plan for the conveyance system while maintaining the uninterrupted flow of water to consumers. At the same time, MMRA recognized the need for a long term management tool that would facilitate repair and maintenance decisions and enable taking the appropriate preventive measures through continuous monitoring and estimation of the remaining life of each pipe. This management tool is known as the Pipe Risk Management System (PRMS) and now in operation at MMRA. Both the rehabilitation plan and the PRMS require the availability of complete and accurate pipe construction and manufacturing data This paper describes a systematic approach of data collection, analysis, evaluation and correction for the construction and manufacturing data files of phase I pipes which are the platform for the PRMS database and any other related decision support system.

Directional Drilling Optimization by Non-Rotating Stabilizer

The Non-Rotating Adjustable Stabilizer / Directional Solution (NAS/DS) is the imitation of a mechanical process or an object by a directional drilling operation that causes a respond mathematically and graphically to data and decision to choose the best conditions compared to the previous mode. The NAS/DS Auto Guide rotary steerable tool is undergoing final field trials. The point-the-bit tool can use any bit, work at any rotating speed, work with any MWD/LWD system, and there is no pressure drop through the tool. It is a fully closed-loop system that automatically maintains a specified curvature rate. The Non–Rotating Adjustable stabilizer (NAS) can be controls curvature rate by exactly positioning and run with the optimum bit, use the most effective weight (WOB) and rotary speed (RPM) and apply all of the available hydraulic energy to the bit. The directional simulator allowed to specify the size of the curvature rate performance errors of the NAS tool and the magnitude of the random errors in the survey measurements called the Directional Solution (DS). The combination of these technologies (NAS/DS) will provide smoother bore holes, reduced drilling time, reduced drilling cost and incredible targeting precision. This simulator controls curvature rate by precisely adjusting the radial extension of stabilizer blades on a near bit Non-Rotating Stabilizer and control process corrects for the secondary effects caused by formation characteristics, bit and tool wear, and manufacturing tolerances.

Green Lean TQM Practices in Malaysian Automotive Companies

Green Lean Total Quality Management (TQM) System is a system comprises of Environmental Management System (EMS) practices which is integrated to TQM with Lean Manufacturing (LM) principles. The ultimate goal of this system is to focus on achieving total customer satisfaction and environmental care by removing eight wastes available in any process in an organization. A survey questionnaire was developed and distributed to 30 highly active automotive vendors in Malaysia and analyzed by SPSS v.17. It was found out that some vendors have been practicing TQM and LM while some have started to implement EMS. This study is only focusing on highly active companies that have been involved in MAJAICO Program and Proton Vendor Development Program. This is the first study conducted to know the current status of TQM, LM and EMS practices in highly active automotive companies in Malaysia. It was found out that EMS has been practiced by 16 companies out of 30. Within these 16 companies the approach is more holistic and green. This is a preliminary study that combined 4 awards practices, ISO/TS16949, Toyota Production System SAEJ4000, MAJAICO Lean Production System and EMS.

Framework for Delivery Reliability in European Machinery and Equipment Industry

Today-s manufacturing companies are facing multiple and dynamic customer-supplier-relationships embedded in nonhierarchical production networks. This complex environment leads to problems with delivery reliability and wasteful turbulences throughout the entire network. This paper describes an operational model based on a theoretical framework which improves delivery reliability of each individual customer-supplier-relationship within non-hierarchical production networks of the European machinery and equipment industry. By developing a non-centralized coordination mechanism based on determining the value of delivery reliability and derivation of an incentive system for suppliers the number of in time deliveries can be increased and thus the turbulences in the production network smoothened. Comparable to an electronic stock exchange the coordination mechanism will transform the manual and nontransparent process of determining penalties for delivery delays into an automated and transparent market mechanism creating delivery reliability.

Multi-Objective Cellular Manufacturing System under Machines with Different Life-Cycle using Genetic Algorithm

In this paper a multi-objective nonlinear programming model of cellular manufacturing system is presented which minimize the intercell movements and maximize the sum of reliability of cells. We present a genetic approach for finding efficient solutions to the problem of cell formation for products having multiple routings. These methods find the non-dominated solutions and according to decision makers prefer, the best solution will be chosen.

Integrated Evaluation of Green Design and Green Manufacturing Processes Using a Mathematical Model

In this research, a mathematical model for integrated evaluation of green design and green manufacturing processes is presented. To design a product, there can be alternative options to design the detailed components to fulfill the same product requirement. In the design alternative cases, the components of the product can be designed with different materials and detailed specifications. If several design alternative cases are proposed, the different materials and specifications can affect the manufacturing processes. In this paper, a new concept for integrating green design and green manufacturing processes is presented. A green design can be determined based the manufacturing processes of the designed product by evaluating the green criteria including energy usage and environmental impact, in addition to the traditional criteria of manufacturing cost. With this concept, a mathematical model is developed to find the green design and the associated green manufacturing processes. In the mathematical model, the cost items include material cost, manufacturing cost, and green related cost. The green related cost items include energy cost and environmental cost. The objective is to find the decisions of green design and green manufacturing processes to achieve the minimized total cost. In practical applications, the decision-making can be made to select a good green design case and its green manufacturing processes. In this presentation, an example product is illustrated. It shows that the model is practical and useful for integrated evaluation of green design and green manufacturing processes.