Predicting Protein-Protein Interactions from Protein Sequences Using Phylogenetic Profiles

In this study, a high accuracy protein-protein interaction prediction method is developed. The importance of the proposed method is that it only uses sequence information of proteins while predicting interaction. The method extracts phylogenetic profiles of proteins by using their sequence information. Combining the phylogenetic profiles of two proteins by checking existence of homologs in different species and fitting this combined profile into a statistical model, it is possible to make predictions about the interaction status of two proteins. For this purpose, we apply a collection of pattern recognition techniques on the dataset of combined phylogenetic profiles of protein pairs. Support Vector Machines, Feature Extraction using ReliefF, Naive Bayes Classification, K-Nearest Neighborhood Classification, Decision Trees, and Random Forest Classification are the methods we applied for finding the classification method that best predicts the interaction status of protein pairs. Random Forest Classification outperformed all other methods with a prediction accuracy of 76.93%

Application of a Dual Satellite Geolocation System on Locating Sweeping Interference

This paper describes an application of a dual satellite geolocation (DSG) system on identifying and locating the unknown source of uplink sweeping interference. The geolocation system integrates the method of joint time difference of arrival (TDOA) and frequency difference of arrival (FDOA) with ephemeris correction technique which successfully demonstrated high accuracy in interference source location. The factors affecting the location error were also discussed.

Receding Horizon Filtering for Mobile Robot Systems with Cross-Correlated Sensor Noises

This paper reports on a receding horizon filtering for mobile robot systems with cross-correlated sensor noises and uncertainties. Also, the effect of uncertain parameters in the state of the tracking error model performance is considered. A distributed fusion receding horizon filter is proposed. The distributed fusion filtering algorithm represents the optimal linear combination of the local filters under the minimum mean square error criterion. The derivation of the error cross-covariances between the local receding horizon filters is the key of this paper. Simulation results of the tracking mobile robot-s motion demonstrate high accuracy and computational efficiency of the distributed fusion receding horizon filter.

Flow Discharge Determination in Straight Compound Channels Using ANNs

Although many researchers have studied the flow hydraulics in compound channels, there are still many complicated problems in determination of their flow rating curves. Many different methods have been presented for these channels but extending them for all types of compound channels with different geometrical and hydraulic conditions is certainly difficult. In this study, by aid of nearly 400 laboratory and field data sets of geometry and flow rating curves from 30 different straight compound sections and using artificial neural networks (ANNs), flow discharge in compound channels was estimated. 13 dimensionless input variables including relative depth, relative roughness, relative width, aspect ratio, bed slope, main channel side slopes, flood plains side slopes and berm inclination and one output variable (flow discharge), have been used in ANNs. Comparison of ANNs model and traditional method (divided channel method-DCM) shows high accuracy of ANNs model results. The results of Sensitivity analysis showed that the relative depth with 47.6 percent contribution, is the most effective input parameter for flow discharge prediction. Relative width and relative roughness have 19.3 and 12.2 percent of importance, respectively. On the other hand, shape parameter, main channel and flood plains side slopes with 2.1, 3.8 and 3.8 percent of contribution, have the least importance.

Combine a Population-based Incremental Learning with Artificial Immune System for Intrusion Detection System

This research focus on the intrusion detection system (IDS) development which using artificial immune system (AIS) with population based incremental learning (PBIL). AIS have powerful distinguished capability to extirpate antigen when the antigen intrude into human body. The PBIL is based on past learning experience to adjust new learning. Therefore we propose an intrusion detection system call PBIL-AIS which combine two approaches of PBIL and AIS to evolution computing. In AIS part we design three mechanisms such as clonal selection, negative selection and antibody level to intensify AIS performance. In experimental result, our PBIL-AIS IDS can capture high accuracy when an intrusion connection attacks.

An Empirical Formula for Seismic Test of Telecommunication Equipments

Antiseismic property of telecommunication equipment is very important for the grasp of the damage and the restoration after earthquake. Telecommunication business operators are regulating seismic standard for their equipments. These standards are organized to simulate the real seismic situations and usually define the minimum value of first natural frequency of the equipments or the allowable maximum displacement of top of the equipments relative to bottom. Using the finite element analysis, natural frequency can be obtained with high accuracy but the relative displacement of top of the equipments is difficult to predict accurately using the analysis. Furthermore, in the case of simulating the equipments with access floor, predicting the relative displacement of top of the equipments become more difficult. In this study, using enormous experimental datum, an empirical formula is suggested to forecast the relative displacement of top of the equipments. Also it can be known that which physical quantities are related with the relative displacement.

Application of Artificial Neural Network to Classification Surface Water Quality

Water quality is a subject of ongoing concern. Deterioration of water quality has initiated serious management efforts in many countries. This study endeavors to automatically classify water quality. The water quality classes are evaluated using 6 factor indices. These factors are pH value (pH), Dissolved Oxygen (DO), Biochemical Oxygen Demand (BOD), Nitrate Nitrogen (NO3N), Ammonia Nitrogen (NH3N) and Total Coliform (TColiform). The methodology involves applying data mining techniques using multilayer perceptron (MLP) neural network models. The data consisted of 11 sites of canals in Dusit district in Bangkok, Thailand. The data is obtained from the Department of Drainage and Sewerage Bangkok Metropolitan Administration during 2007-2011. The results of multilayer perceptron neural network exhibit a high accuracy multilayer perception rate at 96.52% in classifying the water quality of Dusit district canal in Bangkok Subsequently, this encouraging result could be applied with plan and management source of water quality.

Fuzzy Ideology based Long Term Load Forecasting

Fuzzy Load forecasting plays a paramount role in the operation and management of power systems. Accurate estimation of future power demands for various lead times facilitates the task of generating power reliably and economically. The forecasting of future loads for a relatively large lead time (months to few years) is studied here (long term load forecasting). Among the various techniques used in forecasting load, artificial intelligence techniques provide greater accuracy to the forecasts as compared to conventional techniques. Fuzzy Logic, a very robust artificial intelligent technique, is described in this paper to forecast load on long term basis. The paper gives a general algorithm to forecast long term load. The algorithm is an Extension of Short term load forecasting method to Long term load forecasting and concentrates not only on the forecast values of load but also on the errors incorporated into the forecast. Hence, by correcting the errors in the forecast, forecasts with very high accuracy have been achieved. The algorithm, in the paper, is demonstrated with the help of data collected for residential sector (LT2 (a) type load: Domestic consumers). Load, is determined for three consecutive years (from April-06 to March-09) in order to demonstrate the efficiency of the algorithm and to forecast for the next two years (from April-09 to March-11).

Recognition of Isolated Handwritten Latin Characters using One Continuous Route of Freeman Chain Code Representation and Feedforward Neural Network Classifier

In a handwriting recognition problem, characters can be represented using chain codes. The main problem in representing characters using chain code is optimizing the length of the chain code. This paper proposes to use randomized algorithm to minimize the length of Freeman Chain Codes (FCC) generated from isolated handwritten characters. Feedforward neural network is used in the classification stage to recognize the image characters. Our test results show that by applying the proposed model, we reached a relatively high accuracy for the problem of isolated handwritten when tested on NIST database.

Earth Station Neural Network Control Methodology and Simulation

Renewable energy resources are inexhaustible, clean as compared with conventional resources. Also, it is used to supply regions with no grid, no telephone lines, and often with difficult accessibility by common transport. Satellite earth stations which located in remote areas are the most important application of renewable energy. Neural control is a branch of the general field of intelligent control, which is based on the concept of artificial intelligence. This paper presents the mathematical modeling of satellite earth station power system which is required for simulating the system.Aswan is selected to be the site under consideration because it is a rich region with solar energy. The complete power system is simulated using MATLAB–SIMULINK.An artificial neural network (ANN) based model has been developed for the optimum operation of earth station power system. An ANN is trained using a back propagation with Levenberg–Marquardt algorithm. The best validation performance is obtained for minimum mean square error. The regression between the network output and the corresponding target is equal to 96% which means a high accuracy. Neural network controller architecture gives satisfactory results with small number of neurons, hence better in terms of memory and time are required for NNC implementation. The results indicate that the proposed control unit using ANN can be successfully used for controlling the satellite earth station power system.

High Accuracy Eigensolutions in Elasticity for Boundary Integral Equations by Nyström Method

Elastic boundary eigensolution problems are converted into boundary integral equations by potential theory. The kernels of the boundary integral equations have both the logarithmic and Hilbert singularity simultaneously. We present the mechanical quadrature methods for solving eigensolutions of the boundary integral equations by dealing with two kinds of singularities at the same time. The methods possess high accuracy O(h3) and low computing complexity. The convergence and stability are proved based on Anselone-s collective compact theory. Bases on the asymptotic error expansion with odd powers, we can greatly improve the accuracy of the approximation, and also derive a posteriori error estimate which can be used for constructing self-adaptive algorithms. The efficiency of the algorithms are illustrated by numerical examples.

A Novel Approach for Protein Classification Using Fourier Transform

Discovering new biological knowledge from the highthroughput biological data is a major challenge to bioinformatics today. To address this challenge, we developed a new approach for protein classification. Proteins that are evolutionarily- and thereby functionally- related are said to belong to the same classification. Identifying protein classification is of fundamental importance to document the diversity of the known protein universe. It also provides a means to determine the functional roles of newly discovered protein sequences. Our goal is to predict the functional classification of novel protein sequences based on a set of features extracted from each protein sequence. The proposed technique used datasets extracted from the Structural Classification of Proteins (SCOP) database. A set of spectral domain features based on Fast Fourier Transform (FFT) is used. The proposed classifier uses multilayer back propagation (MLBP) neural network for protein classification. The maximum classification accuracy is about 91% when applying the classifier to the full four levels of the SCOP database. However, it reaches a maximum of 96% when limiting the classification to the family level. The classification results reveal that spectral domain contains information that can be used for classification with high accuracy. In addition, the results emphasize that sequence similarity measures are of great importance especially at the family level.

Direct Numerical Simulation of Oxygen Transfer at the Air-Water Interface in a Convective Flow Environment and Comparison to Experiments

Two-dimensional Direct Numerical Simulation (DNS) of high Schmidt number mass transfer in a convective flow environment (Rayleigh-B'enard) is carried out and results are compared to experimental data. A fourth-order accurate WENO-scheme has been used for scalar transport in order to aim for a high accuracy in areas of high concentration gradients. It was found that the typical spatial distance between downward plumes of cold high concentration water and the eddy size are in good agreement with experiments using a combined PIV-LIF technique for simultaneous and spatially synoptic measurements of 2D velocity and concentration fields.

The Survey and the Comparison of Maximum Likelihood, Mahalanobis Distance and Minimum Distance Methods in Preparing Landuse Map in the Western Part of Isfahan Province

In this research three methods of Maximum Likelihood, Mahalanobis Distance and Minimum Distance were analyzed in the Western part of Isfahan province in the Iran country. For this purpose, the IRS satellite images and various land preparation uses in region including rangelands, irrigation farming, dry farming, gardens and urban areas were separated and identified. In these methods, matrix error and Kappa index were calculated and accuracy of each method, based on percentages: 53.13, 56.64 and 48.44, were obtained respectively. Considering the low accuracy of these methods to separate land uses due to spread of the land uses, it-s suggested the visual interpretation of the map, to preparing the land use map in this region. The map prepared by visual interpretation is in high accuracy if it will be accompany with the visit of the region.

Identification of Aircraft Gas Turbine Engine's Temperature Condition

Groundlessness of application probability-statistic methods are especially shown at an early stage of the aviation GTE technical condition diagnosing, when the volume of the information has property of the fuzzy, limitations, uncertainty and efficiency of application of new technology Soft computing at these diagnosing stages by using the fuzzy logic and neural networks methods. It is made training with high accuracy of multiple linear and nonlinear models (the regression equations) received on the statistical fuzzy data basis. At the information sufficiency it is offered to use recurrent algorithm of aviation GTE technical condition identification on measurements of input and output parameters of the multiple linear and nonlinear generalized models at presence of noise measured (the new recursive least squares method (LSM)). As application of the given technique the estimation of the new operating aviation engine D30KU-154 technical condition at height H=10600 m was made.

Offline Signature Recognition using Radon Transform

In this work a new offline signature recognition system based on Radon Transform, Fractal Dimension (FD) and Support Vector Machine (SVM) is presented. In the first step, projections of original signatures along four specified directions have been performed using radon transform. Then, FDs of four obtained vectors are calculated to construct a feature vector for each signature. These vectors are then fed into SVM classifier for recognition of signatures. In order to evaluate the effectiveness of the system several experiments are carried out. Offline signature database from signature verification competition (SVC) 2004 is used during all of the tests. Experimental result indicates that the proposed method achieved high accuracy rate in signature recognition.

Improved IDR(s) Method for Gaining Very Accurate Solutions

The IDR(s) method based on an extended IDR theorem was proposed by Sonneveld and van Gijzen. The original IDR(s) method has excellent property compared with the conventional iterative methods in terms of efficiency and small amount of memory. IDR(s) method, however, has unexpected property that relative residual 2-norm stagnates at the level of less than 10-12. In this paper, an effective strategy for stagnation detection, stagnation avoidance using adaptively information of parameter s and improvement of convergence rate itself of IDR(s) method are proposed in order to gain high accuracy of the approximated solution of IDR(s) method. Through numerical experiments, effectiveness of adaptive tuning IDR(s) method is verified and demonstrated.

Visual Hull with Imprecise Input

Imprecision is a long-standing problem in CAD design and high accuracy image-based reconstruction applications. The visual hull which is the closed silhouette equivalent shape of the objects of interest is an important concept in image-based reconstruction. We extend the domain-theoretic framework, which is a robust and imprecision capturing geometric model, to analyze the imprecision in the output shape when the input vertices are given with imprecision. Under this framework, we show an efficient algorithm to generate the 2D partial visual hull which represents the exact information of the visual hull with only basic imprecision assumptions. We also show how the visual hull from polyhedra problem can be efficiently solved in the context of imprecise input.

Analytical solution of Gas Flow Through a Micro-Nano Porous Media by Homotopy Perturbation method

In this paper, we have applied the homotopy perturbation method (HPM) for obtaining the analytical solution of unsteady flow of gas through a porous medium and we have also compared the findings of this research with some other analytical results. Results showed a very good agreement between results of HPM and the numerical solutions of the problem rather than other analytical solutions which have previously been applied. The results of homotopy perturbation method are of high accuracy and the method is very effective and succinct.

Aircraft Gas Turbine Engines Technical Condition Identification System

In this paper is shown that the probability-statistic methods application, especially at the early stage of the aviation gas turbine engine (GTE) technical condition diagnosing, when the flight information has property of the fuzzy, limitation and uncertainty is unfounded. Hence is considered the efficiency of application of new technology Soft Computing at these diagnosing stages with the using of the Fuzzy Logic and Neural Networks methods. Training with high accuracy of fuzzy multiple linear and non-linear models (fuzzy regression equations) which received on the statistical fuzzy data basis is made. Thus for GTE technical condition more adequate model making are analysed dynamics of skewness and kurtosis coefficients' changes. Researches of skewness and kurtosis coefficients values- changes show that, distributions of GTE work parameters have fuzzy character. Hence consideration of fuzzy skewness and kurtosis coefficients is expedient. Investigation of the basic characteristics changes- dynamics of GTE work parameters allows to draw conclusion on necessity of the Fuzzy Statistical Analysis at preliminary identification of the engines' technical condition. Researches of correlation coefficients values- changes shows also on their fuzzy character. Therefore for models choice the application of the Fuzzy Correlation Analysis results is offered. For checking of models adequacy is considered the Fuzzy Multiple Correlation Coefficient of Fuzzy Multiple Regression. At the information sufficiency is offered to use recurrent algorithm of aviation GTE technical condition identification (Hard Computing technology is used) on measurements of input and output parameters of the multiple linear and non-linear generalised models at presence of noise measured (the new recursive Least Squares Method (LSM)). The developed GTE condition monitoring system provides stage-bystage estimation of engine technical conditions. As application of the given technique the estimation of the new operating aviation engine temperature condition was made.