Abstract: The irradiation of polymeric materials has received
much attention because it can produce diverse changes in chemical
structure and physical properties. Thus, studying the chemical and
structural changes of polymers is important in practice to achieve
optimal conditions for the modification of polymers. The effect of
gamma irradiation on the crystalline structure of poly(vinylidene
fluoride) (PVDF) has been investigated using differential scanning
calorimetry (DSC) and X-ray diffraction techniques (XRD). Gamma
irradiation was carried out in atmosphere air with doses between 100
kGy at 3,000 kGy with a Co-60 source. In the melting thermogram of
the samples irradiated can be seen a bimodal melting endotherm is
detected with two melting temperature. The lower melting
temperature is attributed to melting of crystals originally present and
the higher melting peak due to melting of crystals reorganized upon
heat treatment. These results are consistent with those obtained by
XRD technique showing increasing crystallinity with increasing
irradiation dose, although the melting latent heat is decreasing.
Abstract: Many industrial materials like magnets need to be
tested for the radiation environment expected at linear colliders (LC)
where the accelerator and detectors will be subjected to large
influences of beta, neutron and gamma’s over their life Gamma
irradiation of the permanent sample magnets using a 60Co source was
investigated up to an absorbed dose of 700Mrad shows a negligible
effect on some magnetic properties of Nd-Fe-B. In this work it has
been tried to investigate the change of some important properties of
Barium hexa ferrite. Results showed little decreases of magnetic
properties at doses rang of 0.5 to 2.5 Mrad. But at the gamma
irradiation dose up to 10 Mrad it is showed a few increase of
properties. Also study of gamma irradiation of Nd-Fe-B showed
considerably increase of magnetic properties.
Abstract: The changes of the optical and structural properties of
Bismuth-Boro-Tellurite glasses pre and post gamma irradiation were
studied. Six glass samples, with different composition [(TeO2)0.7
(B2O3)0.3]1-x (Bi2O3)x prepared by melt quenching method were
irradiated with 25kGy gamma radiation at room temperature. The
Fourier Transform Infrared Spectroscopy (FTIR) was used to explore
the structural bonding in the prepared glass samples due to exposure,
while UV-VIS Spectrophotometer was used to evaluate the changes
in the optical properties before and after irradiation. Gamma
irradiation causes profound changes in the peak intensity as shown by
FTIR spectra which is due to the breaking of the network bonding.
Before gamma irradiation, the optical band gap, Eg value decreased
from 2.44 eV to 2.15 eV with the addition of Bismuth content. The
value kept decreasing (from 2.18 eV to 2.00 eV) following exposure
to gamma radiation due to the increase of non-bridging oxygen
(NBO) and the increase of defect in the glass. In conclusion, the glass
with high content of Bi2O3 (0.30Bi) give smallest Eg and show less
changes in FTIR spectra after gamma irradiation which indicate that
this glass is more resistant to gamma radiation compared to other
glasses.