Abstract: The irradiation of polymeric materials has received
much attention because it can produce diverse changes in chemical
structure and physical properties. Thus, studying the chemical and
structural changes of polymers is important in practice to achieve
optimal conditions for the modification of polymers. The effect of
gamma irradiation on the crystalline structure of poly(vinylidene
fluoride) (PVDF) has been investigated using differential scanning
calorimetry (DSC) and X-ray diffraction techniques (XRD). Gamma
irradiation was carried out in atmosphere air with doses between 100
kGy at 3,000 kGy with a Co-60 source. In the melting thermogram of
the samples irradiated can be seen a bimodal melting endotherm is
detected with two melting temperature. The lower melting
temperature is attributed to melting of crystals originally present and
the higher melting peak due to melting of crystals reorganized upon
heat treatment. These results are consistent with those obtained by
XRD technique showing increasing crystallinity with increasing
irradiation dose, although the melting latent heat is decreasing.
Abstract: The combination of multi–walled carbon nanotubes
(MWCNTs) with polymers offers an attractive route to reinforce the
macromolecular compounds as well as the introduction of new
properties based on morphological modifications or electronic
interactions between the two constituents. As they are only a few
nanometers in dimension, it offers ultra-large interfacial area per
volume between the nano-element and polymer matrix. Nevertheless,
the use of MWCNTs as a rough material in different applications has
been largely limited by their poor processability, insolubility, and
infusibility. Studies concerning the nanofiller reinforced polymer
composites are justified in an attempt to overcome these limitations.
This work presents one preliminary study of MWCNTs dispersion
into the PVDF homopolymer. For preparation, the composite
components were diluted in n,n-dimethylacetamide (DMAc) with
mechanical agitation assistance. After complete dilution, followed by
slow evaporation of the solvent at 60°C, the samples were dried.
Films of about 80 μm were obtained. FTIR and UV-Vis
spectroscopic techniques were used to characterize the
nanocomposites. The appearance of absorption bands in the FTIR
spectra of nanofilled samples, when compared to the spectrum of
pristine PVDF samples, are discussed and compared with the UV-Vis
measurements.