Abstract: Exposure to ionizing radiation has been found to induce changes in poly(vinylidene fluoride) (PVDF) homopolymers. The high dose gamma irradiation process induces the formation of C=C and C=O bonds in its [CH2-CF2]n main chain. The irradiation also provokes crosslinking and chain scission. All these radio-induced defects lead to changes in the PVDF crystalline structure. As a consequence, it is common to observe a decrease in the melting temperature (TM) and melting latent heat (LM) and some changes in its ferroelectric features. We have investigated the possibility of preparing nanocomposites of PVDF with graphene oxide (GO) through the radio-induction of molecular bonds. In this work, we discuss how the gamma radiation interacts with the nanocomposite crystalline structure.
Abstract: The combination of the properties of graphene oxide
(OG) and PVDF homopolymer makes their combined composite
materials as multifunctional systems with great potential. Knowledge
of the molecular structure is essential for better use. In this work, the
degradation of PVDF polymer exposed to gamma irradiation in
oxygen atmosphere in high dose rate has been studied and compared
to degradation of PVDF/OG composites. The samples were irradiated
with a Co-60 source at constant dose rate, with doses ranging from
100 kGy to 1,000 kGy. In FTIR data shown that the formation of
oxidation products was at the both samples with formation of
carbonyl and hydroxyl groups amongst the most prevalent products
in the pure PVDF samples. In the other hand, the composites samples
exhibit less presence of degradation products with predominant
formation of carbonyl groups, these results also seen in the UV-Vis
analysis. The results show that the samples of composites may have
greater resistance to the irradiation process, since they have less
degradation products than pure PVDF samples seen by spectroscopic
techniques.
Abstract: The combination of multi–walled carbon nanotubes
(MWCNTs) with polymers offers an attractive route to reinforce the
macromolecular compounds as well as the introduction of new
properties based on morphological modifications or electronic
interactions between the two constituents. As they are only a few
nanometers in dimension, it offers ultra-large interfacial area per
volume between the nano-element and polymer matrix. Nevertheless,
the use of MWCNTs as a rough material in different applications has
been largely limited by their poor processability, insolubility, and
infusibility. Studies concerning the nanofiller reinforced polymer
composites are justified in an attempt to overcome these limitations.
This work presents one preliminary study of MWCNTs dispersion
into the PVDF homopolymer. For preparation, the composite
components were diluted in n,n-dimethylacetamide (DMAc) with
mechanical agitation assistance. After complete dilution, followed by
slow evaporation of the solvent at 60°C, the samples were dried.
Films of about 80 μm were obtained. FTIR and UV-Vis
spectroscopic techniques were used to characterize the
nanocomposites. The appearance of absorption bands in the FTIR
spectra of nanofilled samples, when compared to the spectrum of
pristine PVDF samples, are discussed and compared with the UV-Vis
measurements.