Abstract: This paper investigates multiple factors that impact the formation of geopolymers and their compressive strength to be utilized in construction as an environmentally-friendly material. Bentonite and Kaolinite were thermally calcinated at 750 °C to obtain Metabentonite and Metakaolinite with higher reactivity. Both source materials were activated using a solution of sodium hydroxide (NaOH). Thereafter, samples were cured at different temperatures. The samples were analyzed chemically using a host of spectroscopic techniques. The bulk density and compressive strength of the produced geopolymer pastes were studied. Findings indicate that the ratio of NaOH solution to source material affects the compressive strength, being optimal at 0.54. Moreover, controlled heat curing was proven effective to improve compressive strength. The existence of characteristic Fourier Transform Infrared Spectroscopy (FTIR) peaks at approximately 1020 cm-1 and 460 cm-1 which correspond to the asymmetric stretching vibration of Si-O-T and bending vibration of Si-O-Si, hence, confirming the formation of the target geopolymer.
Abstract: The combination of the properties of graphene oxide
(OG) and PVDF homopolymer makes their combined composite
materials as multifunctional systems with great potential. Knowledge
of the molecular structure is essential for better use. In this work, the
degradation of PVDF polymer exposed to gamma irradiation in
oxygen atmosphere in high dose rate has been studied and compared
to degradation of PVDF/OG composites. The samples were irradiated
with a Co-60 source at constant dose rate, with doses ranging from
100 kGy to 1,000 kGy. In FTIR data shown that the formation of
oxidation products was at the both samples with formation of
carbonyl and hydroxyl groups amongst the most prevalent products
in the pure PVDF samples. In the other hand, the composites samples
exhibit less presence of degradation products with predominant
formation of carbonyl groups, these results also seen in the UV-Vis
analysis. The results show that the samples of composites may have
greater resistance to the irradiation process, since they have less
degradation products than pure PVDF samples seen by spectroscopic
techniques.