Abstract: Investigation of fracture of wood components can prevent from catastrophic failures. Created fracture process zone (FPZ) in crack tip vicinity has important effect on failure of cracked composite materials. In this paper, a failure criterion for fracture investigation of cracked wood specimens under mixed mode I/II loading is presented. This criterion is based on maximum strain energy release rate and material nonlinearity in the vicinity of crack tip due to presence of microcracks. Verification of results with available experimental data proves the coincidence of the proposed criterion with the nature of fracture of wood. To simplify the estimation of nonlinear properties of FPZ, a damage factor is also introduced for engineering and application purposes.
Abstract: This paper presents the results of a study on the
influence of varying percentages of rock bridges along a basal surface
defining a biplanar failure mode. A pseudo-coupled-hydromechanical
brittle fracture analysis is adopted using the state-of-the-art code
Slope Model. Model results show that rock bridge failure is strongly
influenced by the incorporation of groundwater pressures. The
models show that groundwater pressure can promote total failure of a
5% rock bridge along the basal surface. Once the percentage of the
rock bridges increases to 10 and 15%, although, the rock bridges are
broken, full interconnection of the surface defining the basal surface
of the biplanar mode does not occur. Increased damage is caused
when the rock bridge is located at the daylighting end of the basal
surface in proximity to the blast damage zone. As expected, some
cracking damage is experienced in the blast damage zone, where
properties representing a good quality controlled damage blast
technique were assumed. Model results indicate the potential increase
of permeability towards the blast damage zone.