Abstract: This paper discusses the causes of the structural failure in a tower crane. The structural collapse occurred at the upper joints of the extension element used to increase the height of the crane. The extension element consists of a steel lattice structure made with angular profiles and plates joined to the tower element by arc welding. Macroscopic inspection of the sections showed that the break was always observed on the angular profiles at the weld bead edge. The case study shows how, using mechanical characterization, chemical analysis of the steel and macroscopic and microscopic metallographic examinations, it was possible to obtain significant evidence that identified the mechanism causing the breakage. The analyses identified the causes of the structural failure as the use of materials that were not suitable for welding and poor performance in the welding joints.
Abstract: Investigation of fracture of wood components can prevent from catastrophic failures. Created fracture process zone (FPZ) in crack tip vicinity has important effect on failure of cracked composite materials. In this paper, a failure criterion for fracture investigation of cracked wood specimens under mixed mode I/II loading is presented. This criterion is based on maximum strain energy release rate and material nonlinearity in the vicinity of crack tip due to presence of microcracks. Verification of results with available experimental data proves the coincidence of the proposed criterion with the nature of fracture of wood. To simplify the estimation of nonlinear properties of FPZ, a damage factor is also introduced for engineering and application purposes.
Abstract: Electrodeposition is a simple and economic technique
for precision coating of different shaped substrates with pure metal,
alloy or composite films. Dc electrodeposition was used to produce
Cr, Co-Cr and Co-Cr/TiO2 nano-composite coatings from Cr(III)
based electrolytes onto 316L SS substrates. The effects of TiO2 nanoparticles
concentration on co-deposition of these particles along with
Cr content and microhardness of the coatings were investigated.
Morphology of the Cr, Co-Cr and Co-Cr/TiO2 coatings besides their
tribological behavior were studied. The results showed that increment
of TiO2 nanoparticles concentration from 0 to 30 g L-1 in the bath
increased their co-deposition and Cr content of the coatings from 0 to
3.5 wt.% and from 23.7 to 31.2 wt.%, respectively. Microhardness of
Cr coating was about 920 Hv which was higher than Co-Cr and even
Co-Cr/TiO2 films. Microhardness of Co-Cr and Co-Cr/TiO2 coatings
were improved by increasing their Cr and TiO2 content. All the
coatings had nodular morphology and contained microcracks.
Nodules sizes and the number of microcracks in the alloy and
composite coatings were lower than the Cr film. Wear results
revealed that the Co-Cr/TiO2 coating had the lowest wear loss
between all the samples, while the Cr film had the worst wear
resistance.